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1. prosince 2005



Obsah

Obsah i

Seznam obrázků v
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3.7 Typy rozhraní mezi dvěma tuhými fázemi . . . . . . . . . . . . . . . . . . . . 21
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3.31 Kinetická křivka heterogenní přeměny probíhající do vzniku 100 % nové fáze 52

iii



SEZNAM OBRÁZKŮ iv
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4.6 Schématické znázornění dendritu a dendritická struktura odlitku . . . . . . . 63
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Kapitola 1
Úvod

V minulé kapitole jsme se zabývali rovnovážnými fázovými diagramy, je-
jichž plochy, čáry a body ukazují, které fáze nebo směsi fází jsou při dané
teplotě, tlaku a složení zcela stabilní, tj. mají nejnižší hodnotu volné en-
talpie (Gibbsovy energie) G. Nyní zaměříme svou pozornost na fázové
přeměny. Ty představují spontánní (samovolnou) přeměnu výchozích fází,
které za daných vnějších podmínek (T, p, c) přestaly být stabilní, na fáze vý-
sledné, které daným vnějším podmínkám jako fáze stabilní příslušejí. Podle
konečného výsledku je možno rozdělit fázové přeměny do dvou hlavních
skupin: na ty, při nichž původní matečná fáze zcela vymizí a je nahrazena
fází novou, a na ty, při nichž výchozí matečná fáze zůstane téměř beze
změny a v ní se vytvoří malý podíl jedné nebo více nových fází (minoritní
fáze).

Z termodynamického hlediska představují fázové přeměny přechod ze
stavu soustavy, vyznačujícího se vyšší hodnotou volné entalpie, do stavu
s její nižší hodnotou. Tento úbytek energie představuje práci vynaloženou
na vykonání uvažované přeměny (−dG = (dAmax)neobj)1. Hlavním cílem
fázových přeměn je tedy snaha dosáhnout minima volné entalpie soustavy,
což úzce souvisí s alternativním kritériem pro určení směru samovolných
termodynamických dějů – s tendencí soustavy a jejího okolí jako celku mě-
nit se spontánně ve směru rostoucí entropie, která ve stavu rovnováhy do-
sahuje své maximální hodnoty. Například při přeměně skupenství kapal-
ného na tuhé dosahuje soustava větší uspořádanosti a její entropie se zmen-
šuje. Zároveň však vzrůstá entropie okolí vlivem reakčního tepla, které se
ze soustavy uvolnilo a okolí je přijalo. Pod určitou teplotou může být pří-
růstek entropie okolí větší než je úbytek entropie soustavy, změna entropie
celku soustava + okolí je kladná a spontánně proběhne termodynamický
děj – tuhnutí.

Při úvahách o fázových přeměnách se říká, že příznivý termodyna-

1rovnice (5.95), str. 132, L. Ptáček a kol.: Nauka o materiálu I., Brno, 2001

1



2

mický předpoklad je nutnou, avšak ne dostačující podmínkou pro jejich
uskutečnění. Myslí se tím, že je vždy důležité rozlišovat mezi termodyna-
mikou přeměny a rychlostí jejího průběhu. Přeměna, o níž lze z hlediska
termodynamiky předpokládat, že se uskuteční samovolně, může probíhat
tak pomalu, že nemá praktického hlediska žádný význam. Například za
normálních teplot a tlaků je volná entalpie grafitu nižší než volná entalpie
diamantu, takže existuje termodynamická tendence k přeměně diamantu
na grafit. Při této přeměně se však musí změnit uspořádání atomů uhlíku (z
krystalové mřížky diamantu na hexagonální mřížku grafitu). Tento děj je v
tuhém stavu neměřitelně pomalý, s výjimkou extrémně vysokých teplot, a
proto se za běžných podmínek diamant na grafit nezmění. Rychlost směřo-
vání k rovnovážnému, stabilnímu stavu je problém kinetický a leží mimo
rámec termodynamiky. V plynech a v kapalinách umožňuje větší pohyb-
livost molekul rychlé uskutečnění přeměn, avšak v tuhých látkách může
termodynamická nestabilita soustavy zůstat zakonzervována. Termodyna-
micky nestabilní fáze, která přetrvávají proto, že přeměna je brzděna kine-
ticky, se nazývají metastabilní. Diamant je tady za normálních podmínek
(T, p) metastabilní fází uhlíku. Metastabilní fáze se někdy označují jako ki-
neticky stabilní, na rozdíl od fází termodynamicky stabilních.



Kapitola 2
Rozdělení fázových přeměn

Při popisu fázových přeměn se zabýváme jejich mechanismem, termody-
namikou a kinetikou. Mechanismus přeměny vysvětluje vztahy mezi struk-
turou původní a nové fáze. Termodynamika se vztahuje k energetickým
otázkám přeměny. Kinetika popisuje časový průběh přeměny.

2.1 Rozdělení fázových přeměn z termodynamického
hlediska

Ehrenfest ukázal, že k rozdělení fázových přeměn je možno využít termo-
dynamických vlastností látek. U přeměn prvního řádu (obr. 2.1a) se volná
entalpie G staré a nové fáze mění při konstantním tlaku, různou rychlostí
v závislosti na teplotě po obou stranách teoretické teploty přeměny Tt. U
těchto přeměn jsou při teplotě Tt první derivace volné entalpie dG/dT a
dG/dp nespojité. Podle vztahů (5.96) a (5.97)t 1o znamená, že u těchto pře-
měn dochází při T = Tt ke skokové změně entropie S, objemu V a také en-
talpie H v souladu s uvolňováním nebo spotřebováváním reakčního tepla
přeměny ∆H . Molární tepelná kapacita Cp má nekonečnou hodnotu, ne-
bot’ teplo je spojeno s průběhem přeměny a ne se změnou teploty. Do této
skupiny přeměn patří běžné fázové přeměny jako vypařování, tavení, alot-
ropické přeměny.

Druhou skupinu tvoří tzv. přeměny druhého řádu (obr. 2.1b). U těchto
přeměn jsou první derivace volné entalpie G, (dG/dT )p a (dG/dp)T spojité,
druhé derivace (d2G/dT 2)p a (d2G/dp2)T jsou nespojité. Křivka G(T ) má
stejný sklon po obou stranách teploty Tt, což naznačuje, že se entropie S,
objem V a entalpie H při této přeměně nemění. Nespojitá je při teplotě Tt

1Viz knihu L. Ptáček a kol.: Nauka o materiálu I., Brno 2001.
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a)

b)

TTt

TTt

TTt

TTt

TTt

TTt

TTt

TTt

G

G

S

S

V

V

H

H

TTt

TTt

Cp

Cp

Obrázek 2.1: Schéma Ehrenfestova rozdělení fázových přeměn – změna termodynamic-
kých vlastností v závislosti na teplotě při konstantním tlaku, a) přeměny prvního řádu,
b) přeměny druhého řádu.

závislost Cp(T ), nebot’(
∂2G

∂T 2

)
p

= −
(

∂S

∂T

)
p

=
1
T

(
∂H

∂T

)
=

Cp

T
. (2.1)

Molární tepelná kapacita Cp však nedosahuje při Tt nekonečné hodnoty.
Příkladem tohoto druhu přeměn je změna kovů vodivých na supravodivé
při nízkých teplotách.

Existují ještě přeměny, nazývané λ-přeměny podle tvaru závislosti Cp(T ),
uvedené na obr. 2.2. Jde o přeměny, které nejsou přeměnami prvního řádu,
přesto však u nich tepelná kapacita Cp dosahuje při teoretické teplotě pře-
měny Tt nekonečné hodnoty. Typickým znakem je také začátek růstu Cp již
při teplotách o hodně nižších než je teplota Tt. Příkladem těchto přeměn
jsou uspořádávací procesy ve slitinách, změna magnetických vlastností a
změna ze stavu tekutého do stavu supratekutého u kapalného hélia.

2.2 Rozdělení fázových přeměn z kinetického hlediska

Z kinetického stanoviska lze fázové přeměny klasifikovat jednak z hlediska
nukleace, jednak z hlediska růstových dějů.

Z hlediska nukleace se fázové přeměny dělí do dvou hlavních skupin,
na přeměny homogenní a přeměny heterogenní. U homogenních přeměn
jsou podmínky pro vznik zárodků nové fáze stejné ve všech místech staré
fáze, u heterogenních přeměn se zárodky nové fáze začínají tvořit v prefe-
renčních místech staré fáze.

Roztřídění fázových přeměn podle procesů růstu navrhl Christian; je
uvedeno v tab. 2.1. Fázové přeměny jsou zde rozděleny do dvou hlavních
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Obrázek 2.2: Průběh molární tepelná kapacity Cp(T ) u λ-přeměny: λ-křivka hélia.

skupin, na přeměny homogenní a heterogenní. Jako homogenní jsou ozna-
čovány fázové přeměny, v jejichž průběhu nevznikají v soustavě nespo-
jité oblasti, nebot’ tyto přeměny se uskutečňují naráz v celém objemu staré
fáze. Patří sem jednak spinodální rozpad nestabilního přesyceného tuhého
roztoku, jednak uspořádávací reakce v tuhých roztocích. V obou případech
zůstává přechod mezi novou a matečnou fází spojitý. Jako heterogenní jsou
označovány fázové přeměny, které začínají tvorbou zárodků nové fáze, jež
pak rostou na úkor fáze matečné. V průběhu přeměny vznikají v soustavě
nespojité oblasti, i v případech, kdy výchozí a konečný stav je tvořen jedi-
nou fází.

Heterogenní přeměny jsou dále roztříděny do tří skupin podle děje, kte-
rým je řízen růst nové fáze:

Růst řízený odvodem tepla se vyskytuje při krystalizaci, nebot’ její sku-
penské teplo uvolňované z tuhnoucí taveniny je velké a kdyby ne-
bylo odváděno od mezifázového rozhraní krystal-tavenina do okolí,
toto rozhraní by se zahřálo na teplotu tavení Tm a proces krystalizace
by se zastavil. Ve skutečnosti se skupenské teplot krystalizace odvádí
od mezifázového rozhraní vedením přes tuhou fázi a prouděním v
tavenině. Stupeň zahřátí mezifázového rozhraní závisí na rychlosti
uvolňování latentního tepla a na rychlosti jeho odvodu z mezifázo-
vého rozhraní.

Tepelně aktivovaný růst se uplatňuje v teplotní oblasti, kde tepelný po-
hyb atomů je dostatečně intenzivní, u přeměn, jejichž reakční teplo
není příliš velké. Jsou to například fázové přeměny v tuhých látkách s
výjimkou přechodu ze stavu paramagnetického do stavu feromagne-
tického. Reakční tepla pro fázové přeměny čistého železa jsme uvedli
v tabulce 5.4 2.

2Viz knihu L. Ptáček a kol.: Nauka o materiálu I., Brno 2001.
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Atermální růst se vyskytuje u fázových přeměn probíhajících v teplotní
oblasti, kde intenzita tepelného pohybu atomů je nevýznamná. Přesku-
pení atomů z jedné fáze do druhé se uskutečňuje koordinovanými
posuny atomů tak, že většina atomů si po přeměně zachovává stejné
sousedy a růst je formálně ekvivalentní deformaci, při níž dochází ke
změně krystalové mřížky.

2.3 Rozdělení fázových přeměn z hlediska uplatnění
difuze

Podle způsobu, kterým se přeměna uskutečňuje, tj. podle hlavního děje,
který se v jejím průběhu uplatňuje, se fázové přeměny dělí na difuzní a
smykové. Difuzní přeměny zahrnují difuzní přemist’ování atomů (nebo
molekul) materiálem. Smykové přeměny naproti tomu zahrnují pouze malá,
koordinovaná, současná přemístění atomů z jejich původní do výsledné
polohy. Jejich rychlost je omezena rychlostí šíření smykových vln v mate-
riálu. Většina fázových přeměn probíhá za účasti difuze. Důležitou smy-
kovou přeměnou je martenzitická přeměna, probíhající např. ve slitinách
soustavy železo-uhlík. Difuzní i smykové přeměny se vyznačují určitými
charakteristickými rysy:

Difuzní přeměny

1. pohyb atomů je náhodný, nekoordinovaný (proto název „civilní“
přeměny);

2. existuje inkubační doba, tj. doba, která musí při daných vnějších
podmínkách uplynout, než se začne stará fáze přeměňovat ve
fázi novou;

3. přeměna se uskutečňuje tvorbou a růstem zárodků nové fáze na
úkor fáze staré;

4. nukleace a růst nové fáze jsou řízeny difuzí, rychlost přeměny
proto závisí na teplotě;

5. růst nové fáze se uskutečňuje postupným posuvem mezifázo-
vého rozhraní mezi starou a novou fází;

6. při přeměně dochází ke změně objemu;

7. u vícesložkových soustav má výsledná fáze obvykle jiné che-
mické složení než fáze výchozí;

8. přeměna probíhá až do vzniku 100 % nové fáze, tj. do zániku
fáze staré;

9. nedochází ke vzniku reliéfu na volném povrchu vlivem přeměny.
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Smykové (bezdifuzní) přeměny

1. pohyb atomů je omezen na vzdálenost menší než je parametr
mřížky, je současný, koordinovaný (proto název „vojenské“ pře-
měny);

2. neexistuje inkubační doba, přeměna se uskuteční ihned po do-
sažení vhodných vnějších podmínek;

3. přeměna se uskutečňuje naráz v celém objemu staré fáze;

4. na přeměně se nepodílí difuze, rychlost přeměny proto nezávisí
na teplotě;

5. mezifázové rozhraní se pohybuje velkou rychlostí, která se blíží
rychlosti šíření zvuku v kovech;

6. přeměna probíhá s určitou krystalografickou orientací nové fáze
vůči staré fázi;

7. výsledné chemické složení nové fáze je stejné jako bylo složení
staré fáze;

8. přeměna neprobíhá do 100 % vzniku nové fáze, určité množství
staré fáze zůstane zachováno;

9. na volném povrchu se vytvoří reliéf.

Přechodové přeměny (s omezenou difuzí)

1. pohyb atomů je náhodný, nekoordinovaný;

2. existuje inkubační doba, závislá na vnějších podmínkách pře-
měny;

3. existuje nukleace a růst zárodků nové fáze;

4. probíhá difuze intersticiálních atomů;

5. rychlost přeměny je závislá na teplotě;

6. dochází k rozdílu v chemickém složení mezi starou a novou fází;

7. difuze substitučních atomů není možná;

8. přeměny neprobíhají do 100 % vzniku nové fáze;

9. dochází ke vzniku reliefu na volném povrchu.

Je vidět, že tyto přeměny s omezenou difuzí přebírají některé znaky od pře-
měn difuzních (1 až 6), jiné od přeměn bezdifuzních (7 až 9). Uskutečňují
se v dosti velkém teplotním intervalu. Čím vyšší je teplota, při níž pro-
bíhají, tím jsou podobnější přeměnám difuzním. Při nižších teplotách se
svým průběhem a výsledkem blíží více přeměnám bezdifuzním.
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Tabulka 2.1: Rozdělení fázových přeměn z kinetického hlediska (růstové pochody).



Kapitola 3
Kinetika difuzních fázových
přeměn

3.1 Souvislost mezi termodynamikou a kinetikou;
základní pojmy kinetiky

Souvislost mezi termodynamickými a kinetickými parametry fázových pře-
měn vysvětlíme na příkladu krystalizace (příp. tavení) čisté látky (obr. 3.1).
Na obr. 3.1b je uvedena závislost volné entalpie čisté látky v tuhém a teku-
tém stavu na teplotě při konstantním tlaku. Stabilní stav při dané teplotě
se vyznačuje nejmenší možnou hodnotou volné entalpie. Jestliže vlivem
změny teploty (nebo obecně i vlivem změny tlaku) přestane být uvažovaný
stav soustavy stabilní (např. tavenina při teplotě TL→S nebo tuhá látka při
teplotě TS→L, je vytvořen termodynamický předpoklad (hnací síla ∆G) pro
uskutečnění fázové přeměny, vlivem níž je opět dosaženo stavu stabilního
za daných vnějších podmínek, tj. za dané teploty a tlaku.

Při fázové přeměně dochází k přeskupení elementárních částic látky, jak
ukazuje obr. 3.1a, znázorňující nepravidelné uspořádání atomů v tavenině
a jejich pravidelné uspořádání v tuhé krystalické látce. Aby se elementární
částice mohla přesunout ze své polohy v tavenině do polohy v tuhé látce,
musí se vyprostit z přitažlivých sil okolních částic v tavenině a musí do-
časně vysunout své sousedy z jejich rovnovážné polohy. To znamená, že při
vzniku nového uspořádání se musí v každém případě překonávat energe-
tické bariéry, vyznačené na obr. 3.1c,d,e, kde ve svislém směru je vynášena
volná entalpie soustavy označená velkým G, je-li uvažována z hlediska ter-
modynamického, a malým g, je-li uvažována z hlediska kinetického. Ve vo-
dorovném směru se vyznačuje stav soustavy, vyjadřovaný někdy též jako
reakční koordináta.

Obr. 3.1c ukazuje, že při teplotě TL→S je příznivý termodynamický před-
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Obrázek 3.1: Energetické podmínky krystalizace (případně tavení) čisté látky – znázor-
nění vztahu mezi termodynamikou a kinetikou fázových přeměn:
a) pravidelné uspořádání atomů v tuhé látce v rovinách {111} krystalové mřížky f.c.c. a ne-
pravidelné uspořádání atomů v tavenině;
b) závislost volné entalpie roztavené a tuhé čisté látky na teplotě; termodynamická hnací
síla krystalizace a tavení;
c) volná entalpie roztavené a tuhé čisté látky, termodynamická hnací síla ∆GL→S a aktivační
energie ∆gakt krystalizace při teplotě TL→S;
d) volná entalpie roztavené a tuhé čisté látky, které jsou při teplotě Tm v termodynamické
rovnováze (GL = GS); aktivační energie ∆gakt je stejná pro krystalizaci i tavení;
e) volná entalpie roztavené a tuhé čisté látky, termodynamické hnací síla ∆GS→L a aktivační
energie ∆gakt tavení při teplotě TS→L.
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poklad pro uskutečnění krystalizace. Ta však ve skutečnosti proběhne tehdy,
podaří-li se soustavě v reálném čase překonat energetickou bariéru tohoto
přechodu. Obr. 3.1d znázorňuje stav termodynamické rovnováhy mezi roz-
tavenou a tuhou čistou látkou při teplotě Tm, kdy je termodynamická hnací
síla krystalizace i tavení nulová. Proto se žádná z těchto fázových přeměn
nemůže uskutečnit, bez ohledu na jejich kinetické parametry. Obr. 3.1e uka-
zuje příznivý termodynamický předpoklad pro tavení čisté látky při tep-
lotě TS→L, které se však uskuteční v reálném čase pouze za příznivých ki-
netických podmínek, tj. podaří-li se soustavě překonat v reálném čase ener-
getickou bariéru této přeměny.

Na obr. 3.1c,d,e vyznačená aktivační energie přeměny ∆gakt je mini-
mální energie, kterou musí elementární částice získat, aby mohly uskuteč-
nit uvažovaný termodynamický děj (např. chemickou reakci nebo fázovou
přeměnu). Zamysleme se nad problémem, odkud elementární částice be-
rou energii potřebnou na překonání energetické bariéry. Průměrná tepelná
energie každé částice je 3kT , kde k je Boltzmannova konstanta. Elemen-
tární částice kmitají kolem svých rovnovážných poloh, dochází ke srážkám
a tím se energie průběžně přenáší z jedné částice na druhou. Proto podle
kinetické teorie mají jednotlivé elementární částice soustavy při dané tep-
lotě a v daném čase různý obsah energie, odlišný od její průměrné celkové
hodnoty, charakterizující celou soustavu, např. Ge a Gs na obr. 3.1a,c,d,e.
Počet elementárních částic Ni s určitou hodnotou energie Ei z celkového
počtu těchto částic

N =
∑

i

Ni

přítomných ve fázovém prostoru je určen rozdělovací funkcí Maxwellovy-
Boltzmannovy statistiky, která je vyjádřena vztahem

Ni = exp(−Ei/kT ), (3.1)

kde k je Boltzmannova konstanta, T je termodynamická teplota soustavy.
Vidíme tedy, že v soustavě existují energetické fluktuace. Počet částic,

jejichž energie převýší o hodnotu ∆gakt průměrnou energii soustavy jako
celku, je analogicky s (2.1) dán vztahem

Nakt = exp(−gakt/kT ). (3.2)

Z uvedeného vyplývá, že začátek a typ přeměn je určen spíš přítom-
ností a charakterem místních rozdílů a kolísání energie než změnou energie
celého systému. V každém místě soustavy, kde elementární částice nabu-
dou takové energie, že jsou schopny překonat energetickou bariéru, může
se začít tvořit stabilní nová fáze.

I když v krystalické látce někdy existují mezi atomy takové vazby, že je
možné si představit současné přeskupení více atomů, je značně nepravdě-
podobné, že k němu skutečně dojde. Praktická pozorování ukazují, že vět-
šina fázových přeměn se uskutečňuje postupným přemíst’ováním atomů
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ze staré do nové fáze, která se začíná tvořit v určitých místech staré fáze a
odtud se rozšiřuje. Počáteční nepatrné objemy nové fáze nazýváme jejími
zárodky (nukleus) a jejich tvorbu nukleací. Postupné zvětšování zárodků
nazýváme růstem nové fáze. Většina fázových přeměn tedy probíhá urči-
tou rychlostí a trvá určitou dobu.

Pokud jde o velikost a rozsah fluktuací energie ve vztahu k typu fázové
přeměny, je možno rozlišovat velké fluktuace existující v malém objemu
a malé fluktuace rozprostřené ve velkém objemu. První z nich odpovídají
klasické představě o tvorbě zárodků, které v průběhu přeměny postupně
rostou, takže vedle sebe po jistou dobu existuje ubývající stará a narůstající
nová fáze. Proto se příslušné přeměny nazývají heterogenní; řadí se mezi ně
mnoho konkrétních druhů fázových přeměn. Druhý zmíněný typ fluktu-
ací energie může také vést k uskutečnění fázových přeměn, obzvlášt’ těch,
jejichž energetická bariéra je nízká. Zde nedochází k tvorbě a růstu klasic-
kých zárodků, přeměna se uskutečňuje současně v celém objemu staré fáze,
nazývá se homogenní a její průběh je srovnatelný s průběhem chemické re-
akce v homogenním systému. Homogenních přeměn je málo, patří mezi ně
například uspořádávací pochody v tuhých roztocích nebo spinodální roz-
pad přesycených tuhých roztoků.

Shrneme-li nyní velmi stručně obsah této kapitoly, vidíme, že jsme v ná-
vaznosti na termodynamiku postupně vysvětlovali základní pojmy kine-
tiky fázových přeměn, kterými jsou: energetická bariéra přeměny, fluktu-
ace energie a její velikost i rozsah, aktivační energie, zárodky a jejich tvorba
(nukleace), růst zárodků, rychlost a doba trvání přeměny. Těmito pojmy se
budeme dále zabývat podrobněji.

3.2 Vznik zárodku (nukleace)

3.2.1 Základní rovnice nukleace

Energetické poměry při tvorbě zárodku nové fáze ve fázi matečné lze po-
psat vztahem

∆g = ∆gobjemová + ∆gpovrchová + ∆gdeformačnı́ + ∆gmřı́žkových poruch. (3.3)

Ve vztahu (3.3) značí všechny symboly ∆g změnu volné entalpie soustavy
(nazírané z kinetického hlediska), spojenou s tvorbou zárodku, neboli ener-
gie vynaložené na tvorbu zárodku:

∆g je celková změna volné entalpie soustavy způsobená vznikem zárodku,

∆gobjemová je spojena s tvorbou objemu zárodku, tj. s přeměnou určitého
malého objemu staré fáze ve fázi novou,

∆gpovrchová je spojena s tvorbou povrchu zárodku, tj. s tvorbou mezifázo-
vého rozhraní mezi starou a novou fází,
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∆gdeformačnı́ je spojena s deformací vyvolanou charakterem povrchu a ob-
jemu zárodku,

∆gmřı́žkových poruch je spojena se změnou energie mřížkové poruchy, způso-
benou vznikem zárodku v jejím místě.

Znaménka + a − vyznačená nad členy pravé strany vztahu (3.3) zdůraz-
ňují, že některé dílčí hodnoty ∆g jsou vždy záporné (usnadňují nukleaci),
jiné jsou vždy kladné (ztěžují nukleaci).

Pod vztahem (3.3) je znázorněno, které jeho členy bereme v úvahu při
různých fázových přeměnách a při různých typech nukleace. Je třeba vy-
světlit, že nyní použité pojmy homogenní a heterogenní nukleace mají po-
někud odlišný význam než měly tyto pojmy uvedené v souvislosti s typem
fázové přeměny v závěru kap. 2. Homogenní nukleace v tavenině i v pevné
fázi je nukleace v klasickém smyslu, při níž jde o tepelnou aktivaci atomů
nestabilní staré fáze, uschopňující je k překonání energetické bariéry, aby
mohly vytvořit nové uspořádání, odpovídající zárodku vznikající stabilní
fáze. Protože popsaný děj může proběhnout v kterémkoliv místě staré sou-
stavy, nazývá se tato nukleace homogenní. Při skutečných fázových pře-
měnách k ní dochází velmi zřídka. Heterogenní nukleace probíhá ve vy-
braných místech staré fáze, kterými mohou být vměstky (tj., cizí pevné čás-
tice) v tavenině nebo poruchy krystalové mřížky v pevné fázi (např. hranice
zrn a dislokace). Proto je heterogenní nukleace vždy snadnější, energeticky
méně náročná, než nukleace homogenní. Heterogenní nukleace je naprosto
převažujícím typem nukleace v praktických, technických podmínkách.

V dalších odstavcích se budeme jednotlivých typy nukleace, znázorně-
nými ve vztahu (3.3), zabývat blíže.

3.2.2 Homogenní nukleace pevné fáze v tavenině

Představme si vysoce čistou taveninu, to je takovou taveninu, která neob-
sahuje nic jiného než atomy vlastní látky. Ty jsou v neustálém tepelném po-
hybu. Čas od času se malý počet atomů může zcela náhodně seskupit a vy-
tvořit malý krystal. Stane-li se to při teplotě T ležící nad teplotou tavení Tm,
atomy se téměř ihned zase rozpojí a krystalek zanikne. Je-li tavenina pře-
chlazená, což znamená že její teplota je nižší než Tm, existuje možnost, že
vzniklý krystalek se stane termodynamicky i kineticky stabilní a začne růst.

Při homogenní nukleaci uvažujeme, že se v tavenině vytvoří zárodek
tuhé fáze ve tvaru koule o poloměru r (obr. 3.2). V souladu se vztahem (3.3)
potom vyjádříme

∆ghom = ∆gobj + ∆gpovrch = −4
3
πr3

hom

∣∣∣∆GL→S
V

∣∣∣+ 4πr2
homσLS, (3.4)

kde ∆GL→S
V [ J·m−3] je rozdíl termodynamicky chápané volné entalpie G

mezi taveninou L a tuhou fází S, σLS [ J·m−2] je měrná povrchová energie
povrchu zárodku, tj. fázového rozhraní mezi taveninou L a tuhou fází S.
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Dolní index V u hnací síly nukleace ∆G zdůrazňuje, že musí být pou-
žito hodnot ∆GL→S

V [ J·m−3] místo obvyklých ∆G [J·mol−1], což vyplývá z
rozměrové analýzy vztahu (3.4). Při uvažované teplotě je tavenina mateč-
nou fází a je nestabilní, nově vznikající tuhá fáze je při dané teplotě stabilní.
Z toho vyplývá, že je ∆GL→S

V < 0. Z důvodu jednoznačnosti zápisu uvá-
díme ve vztahu (3.4) absolutní hodnotu této veličiny

∣∣∆GL→S
V

∣∣ a příslušné
znaménko mínus dáváme před celý první člen na pravé straně rovnice.
Kdyby bylo ∆GL→S

V > 0, nebyl by splněn prvotní termodynamický před-
poklad přeměny a ke kinetickým úvahám bychom vůbec nepřistoupili. Po
tomto vysvětlení rozumíme, proč jsme u vztahu (3.3) uvedli, že je vždy
∆gobj < 0.

Hodnoty σLS jsou vždy větší než nula, proto jsme při rozboru vztahu (3.3)
uvedli, že je vždy ∆gpovrch > 0.

Vztah (3.4) je graficky znázorněn na obr. 3.2. Vezmeme-li v úvahu ter-
modynamický poznatek, že spontánní přeměny probíhají ve směru snižo-
vání volné entalpie soustavy, vidíme, že přeměna určitého objemu tave-
niny na tuhou fázi nečiní žádné potíže (∆gobj < 0), zatímco tvorba mezi-
fázového povrchu je energeticky náročná (∆gpovrch > 0). Výsledná funkce
(∆ghom) se vyznačuje maximem ∆g∗hom (energie spojená s vytvořením zá-
rodku kritické velikosti) při poloměru r∗hom (kritický poloměr zárodku). Z
průběhu křivky ∆ghom vidíme, že růst malých zárodků s ∆rhom < ∆r∗hom

by vedl ke zvyšování volné entalpie soustavy, nemůže proto probíhat. U
těchto zárodků naopak jejich zmenšování vede k poklesu volné entalpie, a
proto se podkritické zárodky samovolně rozpadají. Teprve při poloměrech
∆rhom > ∆r∗hom způsobuje růst zárodků snižování volné entalpie soustavy,
a proto samovolně probíhá.

Vidíme, že kritické hodnoty poloměru zárodku r∗hom a energie potřebné
k jeho vzniku g∗hom jsou důležitými parametry nukleace, a proto odvodíme
výpočtové vztahy umožňují určit jejich velikost. Z matematického hlediska
hledáme argument rhom = r∗hom pro extrém g∗hom funkce ∆ghom ve vztahu (3.4):
r∗hom se určí z podmínky d(∆ghom)

dr = 0; obdržíme po dosazení rhom = r∗hom

do vztahu (3.4). Hledané vztahy mají tvar

r∗hom =
2σLS∣∣∆GL→S

V

∣∣ (3.5)

g∗hom =
16πσ2

LS

3
∣∣∆GL→S

V

∣∣2 (3.6)

Nukleace tuhé fáze v tavenině může probíhat při různých teplotách T <
Tm, tj. při různě velkém přechlazení taveniny ∆T = Tm − T . Zajímejme
se nyní o to, zda a jak velikost přechlazení taveniny ovlivňuje kritické ve-
ličiny r∗hom a g∗hom. Ve vztazích (3.5) a (3.6) je na teplotě nejvíce závislá ve-
ličina

∣∣∆GL→S
V

∣∣. Její přibližný výpočet pro teploty T blízké zleva a zprava
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r∗hom rhom

∆g

∆g∗hom

0

∆gpovrch

∆ghom

∆gobj

zárodek S

tavenina L

σLS

r

Obrázek 3.2: Homogenní nukleace pevné fáze S ve vysoce čisté tavenině L při teplotě
T < Tm; kulovitý zárodek pevné fáze (v horní části obrázku), energie vynaložené na tvorbu
zárodku pevné fáze, podle vztahu (3.4).

teplotě Tm umožňuje vztah

dU = TdS − pdV. (3.7)

Po jeho dosazení do (3.5) a (3.6) dostaneme

r∗hom =
2σLSTm

|∆Hm|∆T
(3.8)

∆g∗hom =
16πσ3

LST
2
m

3(∆Hm∆T )2
, (3.9)

kde ∆T = Tm − T je přechlazení taveniny při teplotě T < Tm.
Vidíme, že při rostoucím přechlazení ∆T , tj. při rostoucí nestabilitě ta-

veniny, se kritický poloměr zárodku r∗hom zmenšuje úměrně hodnotě 1/∆T
a energie potřebná k jeho tvorbě ∆g∗hom dokonce úměrně hodnotě 1/(∆T )2.
To je schematicky znázorněno na obr. 3.3. Při nejnižší teplotě nukleace T1

je k růstu připraveno nejvíce zárodků nadkritické velikosti, což dává před-
poklad ke vzniku jemnozrnné struktury. Při nejvyšší teplotě nukleace T3 je
naopak kritický poloměr zárodku r3 velký, zárodků způsobilých k růstu je
proto méně a lze předpokládat vznik hrubozrnné struktury.
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a)

∆g

0

∆g∗1

∆g∗2

∆g∗3

r∗1 r∗2 r∗3

∆T1 ∆T2 ∆T3

r

b)

r∗1 r∗2 r∗3 r∗∞ r∗

T1 T2 T3 Tm T

J
N

=
0,

J
G

=
0

c)

T

∆T

r∗,∆g∗

Tm

r∗

∆g∗

Obrázek 3.3: a) Změna tvaru křivky ∆g z obr. 3.1b v závislosti na velikosti přechlazení
taveniny ∆T . b) Předpokládaná velikost zrn tuhé fáze příslušná nukleaci při různém pře-
chlazení. c) Závislost r∗hom a ∆g∗hom na velikosti přechlazení ∆T .
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P

LS

S

S S

ϑ = 180◦ ϑ = 90◦ 90◦ < ϑ < 0◦ ϑ→ 0◦

Obrázek 3.4: Vliv úhlu ϑ na adhezi tuhé fáze S k podložce P.

L

S

P

ϑ

ϑϑ

r

P

L

R RS

L

ν

σLS σLS

σLP σLP

ρ

Obrázek 3.5: Schéma heterogenní nukleace pevné fáze S v tavenině L za působení pod-
ložky P (katalyzátoru nukleace); měrné povrchové energie (povrchová napětí) jsou: σLS

na mezifázovém rozhraní tavenina-tuhá fáze, σLP na mezifázovém rozhraní tavenina-
podložka, σSP na mezifázovém rozhraní tuhá fáze-podložka.

3.2.3 Heterogenní nukleace pevné fáze v tavenině

Heterogenní nukleace probíhá snadno, při teplotách jen o několik stupňů
nižších než je teplota Tm. To je umožněno přítomností cizích částic (nečis-
tot) v tavenině, které tvoří podložku pro vznikající zárodek a působí jako
katalyzátory nukleace. Heterogenní nukleace je tím pravděpodobnější, čím
větší je přilnavost (adheze) nově se tvořící tuhé fáze k podložce. Ta je vy-
jádřena úhlem styku ϑ: čím menší je úhel ϑ, tím lepší je adheze (obr. 3.4).

Známe-li úhel styku ϑ mezi tuhou fází S a podložkou P, můžeme pro-
vést potřebné výpočty pomocí vztahu (3.3) a obr. 3.5, na němž je zakres-
leno (a) schéma a (b) geometrie zárodku S ve tvaru kulové úseče, s úhlem
ϑ ∈ (0◦; 90◦) při heterogenní nukleaci.

Nejdřív provedeme pomocné výpočty:

• poloměr koule, jejíž úseč představuje zárodek tuhé fáze, je r,

• poloměr podstavy kulové úseče ρ = r sinϑ,

• výška kulové úseče ν = r(1− cos ϑ),
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• objem kulové úseče V = 1
3πν2(3r − ν) = 1

3πr3(2− 3 cos ϑ + cos3 ϑ),

• povrch kulového vrchlíku Q = 2πrν = 2πr2(1− cos ϑ),

• povrch základny kulové úseče z = πρ2 = πr2 sin2 ϑ = πr2(1− cos2 ϑ),

• rozdíl (Q− Z cos ϑ) = πr2(2− 3 cos ϑ + cos3 ϑ).

Nyní určíme podle vztahu (3.3) a obdobně jako v kap. 3.2.2 celkovou
změnu volné entalpie, spojené se vznikem zárodku (neboli energii potřeb-
nou na jeho vytvoření):

∆ghet = ∆gobj + ∆gpovrch =

= −V
∣∣∣∆GL→S

V

∣∣∣+ QσLS + Z(σSP − ZσLP) =

= −V
∣∣∣∆GL→S

V

∣∣∣+ QσLS − Z(σLP − σSP),

(3.10)

kde člen ZσSP značí energii potřebnou k vytvoření nového mezifázového
povrchu mezi tuhou fází a podložkou, člen −ZσSP značí uvolněnou po-
vrchovou energii, protože původní mezifázové rozhraní mezi taveninou a
podložkou se po vytvoření zárodku tuhé fáze zmenšilo o plochu Z.

Za účelem zjednodušení výrazu (3.10) vypočítáme vztah mezi měrnými
povrchovými energiemi (povrchovými napětími). Z podmínky jejich rov-
nováhy v bodě R vyplývá, že

σLP = σSP + σLS cos ϑ neboli σLP − σSP = σLS cos ϑ. (3.11)

Po dosazení (3.11) do (3.10) a malé úpravě dostaneme

∆ghet = −V
∣∣∣∆GL→S

V

∣∣∣+ (Q− Z cos ϑ)σLS. (3.12)

Dále po dosazení a do (3.12) a malé úpravě obdržíme

∆ghet =
(
−1

3
πr3

∣∣∣∆GL→S
V

∣∣∣+ πr2σLS

)(
2− 3 cos ϑ + cos3ϑ

)
. (3.13)

Nyní vypočítáme kritické veličiny r∗het a ∆g∗het : z podmínky d(∆ghet)/dr =
0 určíme r = r∗het a po jeho dosazení do (3.13) určíme ∆g∗het . Dostaneme
vztahy

r∗het =
2σLS∣∣∆GL→S

V

∣∣ = r∗hom (3.14)

∆g∗het =
4πσ3

LS

3
(
∆GL→S

V

)2 (2− 3 cos ϑ + cos3 ϑ
)

(3.15)

S uvážením vztahů (3.15) a (3.6) můžeme určit poměr

∆g∗het

∆g∗hom

=
1
4
(
2− 3 cos ϑ + cos3 ϑ

)
, (3.16)
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180◦0◦
0

1

kontaktńı úhel ϑ

∆g∗het/∆g∗hom

Obrázek 3.6: Grafické znázornění vztahu 3.16

který je pro různou velikost úhlu ϑ znázorněn na obr. (3.6). Vidíme, že při
dokonalé přilnavosti S k P (ϑ = 0◦) je ∆g∗het = 0 a při úplné nepřilnavosti
S k P (ϑ = 180◦) je ∆g∗het = ∆g∗hom. Pomocí vztahů (3.14 můžeme určit, že

ρ∗het = r∗het sinϑ = r∗hom sinϑ. (3.17)

Chceme-li poznat, jak závisí hodnoty veličin r∗het a ∆g∗het na teplotě nukle-
ace T , tj. na přechlazení taveniny ∆T = Tm−T , zavedeme do vztahů (3.14)
a (3.15) výraz (5.99 1) pro přibližný výpočet ∆GL→S

V v blízkém okolí zleva i
zprava teploty Tm. Dostaneme

r∗het =
2σLSTm

|∆Hm|∆T
(3.18)

∆g∗het =
4πσ3

LST
2
m

3 (∆Hm∆T )2
(
2− 3 cos ϑ + cos3 ϑ

)
, (3.19)

kde ∆T = Tm − T .

3.2.4 Homogenní nukleace pevné fáze v pevné fázi

Nukleace zárodků v tuhém stavu se významné liší od nukleace krystalů v
tavenině. V souladu s rovnicí (3.3) provádíme energetickou bilanci homo-
genní nukleace v tuhém stavu podle vztahu

∆g = ∆gobjemová + ∆gpovrchová + ∆gdeformačnı́, (3.20)

nebot’ při ní předpokládáme existenci staré, matečné fáze bez poruch její
krystalové mřížky. Tento předpoklad činí homogenní nukleaci v tuhém
stavu velmi málo pravděpodobnou.

Úvahami o prvním a druhém členu na pravé straně energetických bi-
lančních rovnic jsme se podrobně zabývali v kapitolách 3.2.2 a 3.2.3. Nyní
se blíže povšimneme členu ∆gdeformačnı́, který souvisí jednak s pružnou

1Viz knihu L. Ptáček a kol.: Nauka o materiálu I., Brno 2001.
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deformací Wep na vznikající hranici mezi fázemi, jednak s pružnou defor-
mací Weo v okolí zárodku určitého měrného objemu a tvaru

∆gdeformačnı́ = Wep + Weo (3.21)

3.2.4.1 Povrchová energie a energie pružné deformace na mezifázovém
povrchu

V tomto odstavci budeme posuzovat současně velikost energií ∆gpovrchová

v (3.20) a Wep v (3.21) jako části ∆gdeformačnı́ v (3.20). Nejdříve definujeme
tři možné typy mezifázového rozhraní (obr. 3.7): je-li uspořádání atomů v
hraničních rovinách staré a nové fáze co nejméně odlišné, tj. bude-li mezi
novou a matečnou fází zachována kontinuita krystalových mřížek, vznikne
tzv. koherentní rozhraní (obr. 3.7a); je-li kontinuita krystalových mřížek
částečně narušena,vzniká semikoherentní rozhraní (obr. 3.7b); rozhraní, v
němž kontinuita mřížek staré a nové fáze vůbec neexistuje, se nazývá ne-
koherentní (obr. 3.7c).

Stupeň koherence mezifázového rozhraní závisí na meziatomových vzdá-
lenostech v sousedících rovinách obou fází. Označíme-li tuto vzdálenost v
matečné fázi α jako aα a v nové fázi β jako aβ , bude měrná energie rozhraní

εR =
aα − aβ

aα
(3.22)

Pokud εR nepřekročí mez pružných deformací, zůstane mezi oběma fá-
zemi zachována dokonalá koherence. Překročí-li εR mez pružných defor-
mací, vznikají na mezifázovém rozhraní dislokace, jde o semikoherentní
rozhraní. S rostoucí hustotou dislokací koherence postupně mizí, až vznikne
zcela nekoherentní rozraní.

Rostoucí hustota dislokací zvyšuje povrchovou energii mezifázového
povrchu. Uvažujeme -li nyní současně druhý a část třetího členu na pravé
straně vztahu (3.20), tj. ∆gpovrchová a Wep, je z uvedeného zřejmé, že ko-
herentní rozhraní se vyznačuje nejmenší povrchovou energií ∆gpovrchová,
avšak energie pružné deformace rozhraní Wep může být značně vysoká. U
nekoherentního rozhraní je to naopak: povrchová energie je značná, avšak
energie pružné deformace rozhraní je velmi malá. U semikoherentního roz-
hraní je velikost obou druhů energie vyrovnanější.

Při určitém přechlazení ∆T (a tím určité hodnotě ∆GV ) je pravděpo-
dobnost vzniku koherentního rozhraní při nukleaci největší, menší je prav-
děpodobnost vzniku semikoherentního rozhraní, nejméně pravděpodobný
je vznik nekoherentního rozhraní. Při nukleaci v pevném stavu lze vždy
určitý stupeň koherence předpokládat, o čemž svědčí i orientační vztahy
mezi krystalovou mřížkou staré a nové fáze. Koherence rozhraní se poru-
šuje při růstu zárodků, kdy se vytváří skutečné, zřetelné mezifázové roz-
hraní, přesto však zůstávají orientační vztahy mezi matečnou a novou fází
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Obrázek 3.7: Typy rozhraní mezi dvěma tuhými fázemi, a) koherentní, b) semikoherentní,
c) nekoherentní

zachovány. Mikroskopicky lze pozorovat tvar mezifázového rozhraní i po
ukončení přeměny a posoudit, zda nukleace byla koherentní (projevuje
se geometricky přesným, rovinným rozhraním – obr. 3.8a,b nebo nekohe-
rentní (projevuje se nepravidelným nebo zeslabeným rozhraním – obr. 3.8c,d.

3.2.4.2 Energie pružné deformace Weo ve vztahu k objemu a tvaru zá-
rodku nové fáze

Při nukleaci v pevném stavu je nutno počítat i s energií pružné deformace
Weo (3.21) jako části ∆gdeformačnı́ (3.20), která je ovlivněna měrným obje-
mem a tvarem zárodku nové fáze β, tvořící se v matečné fázi α. Pružná
energie deformace je úměrná počtu atomů v zárodku. Je vždy větší než
nula, a proto přispívá ke zvýšení celkové hodnoty ∆gdeformačnı́ a ke sní-
žení termodynamické hnací síly přeměny (Gβ − Gα) < 0 ve vztahu (3.20).
Zárodek nemusí vždy vznikat ve tvaru koule, která splňuje požadavek na
dosažení minimální povrchové volné energie. Musíme proto uvažovat Weo

v závislostí na velikosti i tvaru zárodku a najít jejich nejvhodnější kombi-
naci pro určení kritické hodnoty ∆g = ∆g∗ (3.20), která představuje akti-
vační energii nukleace.

Energie pružné deformace Weo se v teorii fázových přeměn uvažuje
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a) b) c) d)

Obrázek 3.8: Schématické znázornění útvarů nové fáze na hranici zrn staré fáze

v několika souvislostech. Při objasňování její podstaty a způsobu výpo-
čtu vyjdeme z původního modelu, který byl vytvořen ve snaze vysvětlit
vysoké hodnoty směšovacího tepla při tvorbě substitučních tuhých roz-
toků s rozdílnou velikostí atomů základního a přídavného prvku. V této
souvislosti se elastická energie deformace považuje za mechanickou ener-
gii, rozloženou v krystalu na velkou vzdálenost, kterou je třeba odlišit od
jiných (chemických) druhů energie směšování. Jde o dodatkovou energii
směšování, která se určuje pomocí základních elastických konstant, nebot’
tuhá látka A se považuje za nekonečné elastické kontinuum a určují se
hodnoty deformační energie spojené s umístěním přidaného atomu B do
tohoto kontinua A. Modelová představa je taková, že substituční tuhý roz-
tok je tvořen složkami A a B. Atomové poloměry čistých složek jsou r0

A a
r0
B = (1 + ε)r0

A, kde ε může být kladné nebo záporné. Atomové objemy
příslušné složkám ve stavu čistých látek jsou ν0

A a ν0
B a jejich rozdíl

∆νAB = ν0
B − ν0

A = 4πε
(
f0
A

)3
, (3.23)

zanedbáme-li členy řádu ε2 a ε3 z důvodu jejich nepatrné hodnoty. Nejdříve
nás bude zajímat účinek umístění jednoho atomu B do dutiny v krystalové
mřížce čisté složky A. Elastickou energii deformace vyvolanou působením
tohoto jednoho atomu B označíme W 1

eo. Atom B považujeme za pružnou
kouli, která ve výchozím stavu byla stlačena nebo roztažena z poloměru
r0
B = (1 + ε)r0

A na poloměr r0
A a umístěna do kulové dutiny o objemu ν0

A,
přičemž povrchy koule a dutiny jsou pevně spojeny. Dochází k pružnému
přetvoření atomu B i jeho okolí A, atom B zaujme nakonec objem νB s efek-
tivním poloměrem

rB = (1 + C6ε) r0
A, (3.24)

kde veličinou C6 vyjadřujeme změnu původního ε, udávajícího rozdílnou
velikost poloměrů atomů čistých složek A a B. Bylo určeno, že veličina C6

je dána vztahem

C6 =
3KB

3KB + 4GA
, (3.25)
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kde KB je modul objemové pružnosti přídavného atomu B, uvažovaný
jako modul objemové pružnosti složky B, GA je modul pružnosti ve smyku
atomu A uvažovaný jako modul pružnosti ve smyku složky A.

Výpočty vedly k závěru, že celková elastická deformační energie sou-
stavy atom B-matrice A je(

W 1
eo

)
celk

=
(
W 1

eo

)
B

+
(
W 1

eo

)
A

= 6GAC6ε
2νB. (3.26)

Protože pomocí (3.23) je možno vyjádřit, že ε = ∆νAB/3νB, je možno vztah
(3.26) převést do tvaru

(
W 1

eo

)
celk

=
2GAC6

(
ν0
B − ν0

A

)2
3νB

. (3.27)

Ve vztazích (3.26) a (3.27) by vzhledem k aproximaci lineární teorie elasti-
city mohl být stejně dobře uváděn objem ν0

A nebo ν0
B místo νB; nejlépe by

bylo použít nějakou střední hodnotu ν.
Přes různé výhrady a omezení se uvedený výpočtový model elastické

deformační energie, shrnutý v závěrečném vztahu (3.27), stále uznává a vy-
užívá v teorii tuhých roztoků a mřížkových poruch, velmi výrazně také při
nukleaci precipitátů, tj. částic nové fáze β, v matečné fázi α. Tuto problema-
tiku zpracoval Nabarro a nyní se jí budeme věnovat.

Podle Nabarrovy teorie uvažujeme nejdřív vznik nekoherentního kulo-
vého zárodku fáze β v matečné fázi α, když fáze β a α mají rozdílné veli-
kosti atomů a rozdílné měrné objemy. Řešenou situaci dobře popisuje teorie
nesouhlasných objemů, až na to, že z důvodu zjednodušení nepočítáme s
krystalovou anizotropií. Celková elastická deformační energie vztažená na
jeden atom zárodku β je vyjádřena přímo podle vztahu (3.27) jako

(
W 1

eo

)
celk

=
(
W 1

eo

)
β

+
(
W 1

eo

)
α

=
2GαC6 (νβ − να)2

3νβ
, (3.28)

kde
C6 =

3Kβ

3Kβ + 4Gα
. (3.29)

V těchto vztazích je Kβ modul objemové pružnosti fáze β, Gα je modul
pružnosti ve smyku fáze α; να, νβ jsou měrné objemy atomů ve fázi α a β,
νβ − να = ∆νab.

V případě, že kulový precipitát β považujeme za nestlačitelný, veličina
C6 → 1 a elastickou energii deformace přebírá pouze matrice α. Potom je
podle (3.28)

(Weo)celk ≈ (Weo)α =
2µα (νβ − να)2

3νβ
. (3.30)

Nabarro předpokládal, že pro obecnější tvary zárodků, reprezentované ro-
tačními elipsoidy s poloosami R, R, y je možno energii elastické deformace
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Obrázek 3.9: Změna elastické deformační energie matrice α v závislosti na tvaru zá-
rodku β (podle Nabarra)

vyjádřit vztahem

(Weo)celk ≈ (Weo)α =
(

2µα(νβ − να)2

3νβ

)
E
( y

R

)
, (3.31)

kde E(y/R) je Nabbarova funkce. Byly nalezeny její hodnoty pro některé
mezní případy tvaru zárodků:

• když y/R →∞, stane se z elipsoidu válec, což je matematický model
pro precipitát ve tvaru jehlice; v tomto případě je E(y/R) = 3/4;

• pro zárodek ve tvaru koule je E(y/R) = 1 a funkce E(y/R) se v okolí
argumentu y/R = 1 mění velmi málo;

• když y/R � 1, změní se elipsoid v tenkou desku neboli disk. Při-
bližné řešení je v tomto případě E(y/R) ≈ 3πy/4R. Je-li y/R → 0, je i
E(y/R) → 0.

Průběh Nabarrovy funkce, znázorněné hladkou křivkou procházející
uvedenými hodnotami 0, 1, 3/4, je na obr. 3.9. Z něj vidíme, že při elastické
izotropní matrici se deformační energie snižuje přechodem z kulových na
diskové nebo jehlicové zárodky stejného objemu. Zároveň však víme, že při
tomto přechodu se zvyšuje povrchová energie. Proto jsou za daných pod-
mínek stabilní zárodky ve tvaru rotačních elipsoidů, jejichž tvar je mezi
koulí a diskem nebo koulí a jehlicí.

3.2.5 Heterogenní nukleace pevné fáze v pevné fázi

Při heterogenní nukleaci pevné fáze v pevné fázi předpokládáme existenci
reálné staré, matečné fáze, obsahující poruchy krystalové mřížky. V sou-
ladu se vztahem (3.3) provádíme energetickou bilanci heterogenní nukle-
ace v tuhém stavu podle vztahu

∆g = ∆gobjemová + ∆gpovrchová + ∆gdeformačnı́ + ∆gmřı́žkových poruch. (3.32)
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Obrázek 3.10: Cizí atomy zaplňující shluk vakancí

Vysvětlováním prvního, druhého a třetího členu na pravé straně vztahu
(3.32) se zabýváme v kapitolách 3.1, 3.2 a 4. Nyní zbývá pojednat o posled-
ním členu ∆gmřı́žkových poruch, který kvůli zjednodušení označíme jako ∆gp.

Nukleace zárodků nové fáze v tuhém stavu je přítomností vhodných
poruch krystalové mřížky významně ovlivněna. Vytvořením zárodku po-
rucha zaniká, takže změna volné entalpie ∆g, související s vytvořením zá-
rodku, se zmenší o volnou entalpii poruchy, ∆gp< 0. Z toho je vidět, že
poruchy krystalové mřížky usnadňují nukleaci.

Jako příklad uved’me nejdříve vliv vakancí. Tuhý roztok, prudce ochla-
zený z vysoké teploty, je přesycen vakancemi. Snižováním koncentrace va-
kancí vznikají vrstevné chyby, do jejichž okolí nadifundují cizí atomy vět-
ších rozměru (obr. 3.10). Dosáhnou-li takto vytvořené shluky cizích atomů
kritických rozměrů zárodku, jsou schopny dalšího růstu.

V roztažené oblasti krystalové mřížky podél hranových dislokací jsou
příznivé podmínky pro hromadění cizích atomů malých průměrů. Místně
zvýšená koncentrace těchto atomů usnadňuje nukleaci intersticiálních slou-
čenin, tj. karbidů, nitridů, boridů apod.

Zvláštní případ představují hranice dvojčat. Čistá dvojčatová hranice
umožňuje spíše vznik koherentních zárodků, obzvláště tehdy, když její uspo-
řádání (vrstvení) odpovídá uspořádání nové fáze. Jestliže se dvojčatová
hranice stane nekoherentní vlivem hromadění vakancí a dislokací na ní
(např. při tváření), mohou se na ní vytvořit i nekoherentní zárodky nové
fáze.

Nejčastějším místem heterogenní nukleace v tuhém stavu jsou hranice
velkoúhlových zrn technických kovů a slitin. V oblasti hranic je významně
zvýšená hustota poruch krystalové struktury a hranice dosahují velké po-
vrchové energie. V jejich oblasti je navíc větší pravděpodobnost vzniku
koncentračních fluktuací, podmiňujících vznik zárodků nové fáze, nebot’
pohyblivost atomů podél hranic je mnohem větší než uvnitř zrn. Vytvoření
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Obrázek 3.11: Heterogenní nukleace nové fáze β na velkoúhlových hranicích mezi zrny
staré fáze α: a) na styku dvou zrn α b) na styku tří zrn α c) na styku čtyř zrn α.

zárodku na velkoúhlové hranici je vždy provázeno významným snížením
povrchové energie hranice, je však vhodné ještě blíže energeticky rozlišit
tvorbu zárodků v různých místech velkoúhlové hranice mezi zrny staré
fáze (obr. 3.11), protože mají na proces nukleace různý vliv.

Na obr. 3.11a má zárodek tvar dvojnásobné kulové úseče, kterou jsme
uvažovali na obr. 3.4. Podmínka statické rovnováhy je σαα = 2σαβ cos ϑ.
Kritická hodnota volné entalpie ∆g∗hr2

tvorby zárodků na obr. 3.11a je proto
dvojnásobkem kritické volné entalpie dané vztahem (3.15) a její poměr ke
kritické hodnotě volné entalpie ∆g∗hom při homogenní nukleaci pevné fáze
v pevné fázi je

∆g∗hr2

∆g∗hom

=
1
2
(
2− 3 cos ϑ + cos3 ϑ

)
. (3.33)

Na obr. 3.11b je znázorněn prostorový zárodek ohraničený třemi kulo-
vými povrchy, jehož průnik se třemi zrny α je uveden na obrázku. Pod-
mínka statické rovnováhy je opět vyjádřena vztahem σαα = 2σαβ cos ϑ, kde
ϑ je úhel mezi dvěma povrchy α-β a jedním povrchem α-α. Bylo vypočí-
táno, že poměr kritické hodnoty volné entalpie ∆g∗hr3

tohoto zárodku ke
kritické hodnotě volné entalpie homogenní nukleace pevné fáze v pevné
fázi je

∆g∗hr3

∆g∗hom

=
1
3
πηβ, (3.34)

kde ηβ je tvarový faktor objemu zárodku β,

ηβ = 2
[
π − 2 arcsin

(
1
2
cosec ϑ

)
+

1
3

cos2 ϑ
(
4 sin2 ϑ− 1

) 1
2

− arccos
(

cot ϑ√
3

)
cos ϑ

(
3− cos2 ϑ

)]
,

(3.35)

kde úhel ϑ vyhovuje vztahu σαα = 2σαβcosϑ.
Na obr. 3.11c je uveden zárodek ve tvaru sférického čtyřstěnu. Bylo vy-

počítáno, že poměr kritické hodnoty volné entalpie ∆g∗hr4
tvorby tohoto
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zárodku ke kritické hodnotě volné entalpie nukleace ∆g∗hom pevné fáze v
pevné fázi je dán vztahem

∆g∗hr4

∆g∗hom

=
3
4
πηβ, (3.36)

kde ηβ je tvarový faktor objemu zárodku β,

ηβ = 8

[
π

3
− arccos

(
[
√

2− cos ϑ(3− C2
10)]

C10 sinϑ

)]

+ C10 cos ϑ

[(
4 sin2 ϑ− C2

10

) 1
2 − C2

10√
2

]
− 4 cos ϑ(3− cos2 ϑ) arccos

C10

2 sinϑ
,

(3.37)

kde

C10 =
2
{√

2
(
4 sin2 ϑ− 1

) 1
2 − cos ϑ

}
3

,

kde ϑ vyhovuje vztahu σαα = 2σαβ cos ϑ.
Vztahy (3.33), (3.34), (3.35) jsou v závislosti na 2 cos ϑ = σαα

σαβ
znázorněny

na obr. 3.12. Je vidět, že styk čtyř zrn má na usnadnění nukleace největší
vliv, menší vliv má styk tří zrn, nejmenší vliv má hranice mezi dvěma zrny,
nebot’ pro všechny hodnoty cos ϑ je ∆g∗hr4

< ∆g∗hr3
< ∆g∗hr2

< ∆g∗hom.
Ve všech případech poměry kritické hodnoty volné entalpie pro tvorbu zá-
rodku na hranici ke kritické hodnotě volné entalpie při homogenní nukle-
aci klesají s rostoucím poměrem povrchové energie σαα k mezifázové po-
vrchové energii σαβ . Poměr kritických energií dosáhne hodnoty 0 při určité
hodnotě σαα

σαβ
. Vidíme, že se to stane při hodnotách σαα

σαβ
= 2 pro hranice dvou

zrn, σαα
σαβ

=
√

3 pro hranice tří zrn, σαα
σαβ

= 2
√

2√
3

pro hranice čtyř zrn. Při vyš-
ších hodnotách σαα

σαβ
je příslušná kritická hodnota volné entalpie nukleace

∆g∗hri
nulová (odpovídá nekonečnému poloměru zárodku při homogenní

nukleaci). To znamená, že poklesem volné entalpie je za těchto okolností
doprovázen i růst zárodků nulové velikosti a stupeň přeměny závisí pouze
na rychlosti růstu.

Přínos zárodků vytvořených v charakteristických místech velkoúhlové
hranice (obr. 3.11) k rozsahu přeměny nemusí vzrůstat v tomtéž pořadí v
jakém klesá aktivační energie pro jejich vznik (obr. 3.12). Celkový přínos
zárodku k přeměně závisí totiž také na hustotě uvažovaných charakteris-
tických míst ve struktuře a tato hustota se při přechodu z homogenní nuk-
leace k nukleaci na styku čtyř zrn postupně zmenšuje.
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V orig. chybi a prohozeno s nasledujicim.

Obrázek 3.12: Poměr volné entalpie potřebné pro vytvoření zárodku v různých místech
hranic zrn k energii potřebné pro vytvoření zárodku uvnitř zrna, cos ϑ = σαα/2σαβ .

(a) (b)

Obrázek 3.13: Migrace velkoúhlové hranice, a) schéma přemist’ování atomů ze staré na
povrch zárodku nové fáze, b) vliv zakřivení hranice na směr její migrace

3.3 Růst zárodků

Růst zárodků předpokládá přemíst’ování mezifázového rozhraní mezi no-
vou a starou fází ve směru jeho normály. O takovém přemíst’ování nemá
smysl uvažovat u koherentního mezifázového rozhraní, protože to může
existovat jen v úplném počátku nukleace a velmi brzy se poruší při zvět-
šování zárodku. Migrace semikoherentního rozhraní je umožněna disloka-
cemi, které obsahuje. Růst ve směru normály však není snadný, nebot’ je
umožněn jen složkou Burgersova vektoru, která je na semikoherentní roz-
hraní kolmá. Nejpohyblivější ve směru své normály je nekoherentní roz-
hraní.

Růst zárodků kritické a nadkritické velikosti je spontánním jevem, ne-
bot’ je provázen zmenšováním volné entalpie (roste vliv ∆gobj < 0, klesá
vliv ∆gobj > 0). Růst se uskutečňuje oddělováním jednotlivých atomů od
staré fáze, jejich přechodem napříč mezifázovým rozhraním a připojová-
ním k povrchu rostoucího zárodku nové fáze (obr. 3.13a). Při migraci zakři-
vené hranice přecházejí atomy z vypuklé na vydutou stranu rozhraní. Dů-
sledkem je migrace úseků hranice vždy směrem ke středu křivosti (obr. 3.13b).
Zrna s vydutými hranicemi tedy rostou, s vypuklými jsou stravována.

Rozhraní, oddělující novou od staré fáze, představuje energetickou ba-
riéru, k jejímuž překonání musí atomy získat potřebnou aktivační energii.
Proto je migrace velkoúhlové hranice výrazně tepelně aktivovaným dějem.
Existují dva způsoby, jak se může nekoherentní hranice přemíst’ovat ve
směru své normály:

• při prvním způsobu jsou atomy schopny překonat rozhraní a přidá-
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Obrázek 3.14: Schéma dvojrozměrného zárodku na čele nové fáze

vají se ke krystalické látce na jeho druhé straně současně a nezávisle
ve všech bodech rozhraní. To znamená, že růst probíhá současně ve
všech místech hranice;

• při druhém mechanismu existují na rozhraní stupně srovnatelné s ve-
likostí atomů, které se přemíst’ují ze staré do nové fáze pomocí těchto
výstupků. Růst potom probíhá příčným pohybem zmíněných stupňů,
při němž jsou postupně přetrasovávána a do růstu tak zahrnuta jed-
notlivá místa rozhraní.

Připojení atomů na povrch zárodků je složitým jevem, značně závislým
na vlastnostech povrchu. Z tohoto hlediska se povrchy dělí na singulární,
přechodové a nesingulární. Jako singulární se nazývají povrchy, vyznaču-
jící se hlubokým lokálním minimem povrchové energie v závislosti na krys-
talografické orientaci. Z atomického hlediska se singulární a nesingulární
povrchy liší počtem atomových vrstev paralelních s povrchem na mezifá-
zovém přechodu.

U singulárního povrchu se přechod uskuteční jednou vrstvou, zatímco
u nesingulárního povrchu je přechod tvořen několika vrstvami; odtud také
pramení často užívaný název difuzní rozhraní. Singulární rozhraní je v ato-
movém měřítku hladké, zatímco ostatní rozhraní se skládají z fazet nebo
stupňovitých úseků. Jednotlivé atomy připojující se k fázi na druhé straně
singulárního rozhraní jsou nestabilní, mají tendenci se z povrchu nové fáze
odpoutat a vrátit se do fáze staré. Závažnou otázkou růstu singulárního
povrchu je proto vytvoření stupně na povrchu nové fáze, který připojování
atomů umožní. Nejjednodušší řešení spočívá ve vytvoření dvojrozměrného
zárodku kritické velikosti, schematicky znázorněného na obr. 3.14.

Pro zjednodušení úlohy předpokládejme, že zárodek má kruhový pů-
dorys o poloměru r a tloušt’ku rovnu tloušt’ce monoatomární vrstvy. Změna
volné entalpie spojené s jeho vznikem je

∆g = −πr2 |∆Gs→n
V |+ 2πrσ0, (3.38)

kde |∆Gs→n
V | je absolutní hodnota rozdílu mezi volnou entalpií staré a nové

fáze, σ0 je povrchová energie jednotkové plochy obvodu zárodku.
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Obrázek 3.15: Vytvoření stupně vystoupením šroubové dislokace na čelo zárodku

Z podmínky d(∆g)
dr = 0 určíme kritický poloměr zárodku

r∗ =
σ0∣∣∆Gs→n
V

∣∣ . (3.39)

Dosazením (3.39) do (3.38) obdržíme kritickou hodnotu volné entalpie pro
vytvoření tohoto zárodku

∆g∗ = π
σ2

0∣∣∆Gs→n
V

∣∣ . (3.40)

Pravděpodobnost vzniku uvedených dvojrozměrných zárodků tedy závisí
na stupni přesycení staré fáze v okolí rozhraní. Aby zárodek vznikl a rostl
měřitelnou rychlostí, je třeba značného přesycení.

Na rozdíl od toho je rychlost růstu krystalů z par u mnohých látek se
singulárním povrchem měřitelná již při velmi malém přesycení. Příčinou
jsou poruchy krystalové struktury, usnadňující tvorbu stupňů na čele zá-
rodku. Nejznámějším případem je výstup šroubové dislokace na povrch,
což je znázorněno na obr. 3.15. Kruhové spirály jsou projevem nezávislosti
růstu na krystalografickém směru. Závisí-li rychlost pohybu povrchu zá-
rodku na krystalografické orientaci, vzniká polygonální spirála.

Pohyb fázového rozhraní značně závisí na termodynamických vlast-
nostech staré a nové fáze. Názorným příkladem je růst krystalů v kapalné
fázi u jednosložkové soustavy. Pro klasifikaci fázového rozhraní se zde po-
užívá parametr

αJ =
∆H1

m

Tm
fk = ∆S1

mfk, (3.41)

kde ∆H1
m je skupenské teplo tání vztažené na 1 atom, Tm je rovnovážná

teplota tání, ∆S1
m je entropie tání vztažená na 1 atom, fk ≤ 1 je krystalogra-

fický faktor připadající na vzájemné působení atomu s nejbližšími sousedy
v nově vytvářené vrstvě, paralelní se sledovaným povrchem.

Pomocí parametru αJ (3.41) lze rozdělit jednosložkové soustavy do tří
skupin:
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Soustavy s malou entropií tání, αJ ≤ 2: Vyznačují se nesingulárním neboli
atomicky hrubým rozhraním. Růst zárodku nevyžaduje vytváření stupňů.
Do této skupiny patří většina kovů a některé sloučeniny.

Soustavy přechodové, α′′J ≈ 2 až 4: Do této skupiny patří většina anorga-
nických a organických krystalů. Povrch zárodku mohou tvořit roviny
se značně rozdílnými hodnotami krystalografického faktoru fk. Proto
se mohou vyskytovat rozhraní rovinná i drsná, tj. povrchy singulární
i nesingulární.

Soustavy s velkou entropií tání, αJ � 7: Povrch zárodků krystalů je sin-
gulární a silně anizotropní. Rozdíl teplot na rozhraní může dosahovat
až několika kelvinů. Do této skupiny patří látky s pevnou kovalentní
vazbou.

3.4 Rychlosti fázových přeměn

Uvedli jsme již několikrát, že vhodné termodynamické předpoklady jsou
pro uskutečnění kterékoliv přeměny podmínkou nutnou, nikoliv však po-
stačující. Záleží také na posouzení kinetických parametrů přeměny, které
se projeví v její rychlosti. Některé přeměny proběhnou ve zlomcích sekund.
Jiné se uskutečňují v podmínkách, kdy soustava je udržována třeba několik
let na vysoké teplotě. Rychlost přeměny je proto důležitou veličinou a uva-
žuje se v několika podobách. Nyní se začneme potupně zabývat obecnou
rychlostí difuzní přeměny (Arrheniova rovnice), rychlostí nukleace, rych-
lostí růstu a celkovou rychlostí přeměny.

3.4.1 Obecná rychlost difuzní přeměny (Arrheniova rovnice)

Základ teorie reakčních rychlostí položil Arrhenius, který experimentálním
studiem četných chemických reakcí za různých teplot zjistil, že rychlost
reakce y’ v závislosti na teplotě lze vyjádřit rovnicí

y′ = Aexp
(
−Qat

kT

)
nebo y′ = Aexp

(
−Qat

RT

)
, (3.42)

kde A je číselná konstanta, která má stejný rozměr jako rychlost y′, Q je
aktivační energie přeměny (Qat [ J] je vztažena na 1 atom, Q [ J·mol−1] je
vztažena na 1 mol), k je Boltzmannova konstanta [ J·K−1], R je molární ply-
nová konstanta [ J·mol−1· K−1], T je absolutní teplota [K].

Arrheniova rovnice (3.42a,b) slouží k určení číselné hodnoty konstanty A
a aktivační energie Q u libovolného difuzního izotermického děje na zá-
kladě zjištění jeho rychlosti za různých teplot pomocí experimentu.

Takovým dějem může být třeba růst zrna v kovech. Jeho velikost sle-
dujeme při několika konstantních teplotách T1, T2, T3, · · · , Tn v závislosti
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Obrázek 3.16: Schéma pro určení hodnot A a Q pomocí Arrheniovy rovnice

na čase a vyjadřujeme ji pomocí jeho průměru D nebo plochy S. Rychlost
růstu při dané teplotě y′Ti

je potom dána přírůstkem velikosti (D nebo S) za
určitý čas τ , y′Ti

= ∆D
∆τ , příp. y′Ti

= ∆S
∆τ . Regresní analýzou dvojic „rychlosti

růstu-teplota“ pak určíme hodnoty konstanty A a aktivační energie Q pro
uvažovaný děj, růst zrna. Abychom mohli provést lineární regresní ana-
lýzu, která je jednoduchá a průkazná, převedeme vztahy (3.42a,b) logarit-
mováním do lineárního tvaru. Při použití (3.42b) dostaneme

ln y′ = ln A− Q

R
1
T

, (3.43)

což je úsekový tvar rovnice přímky v souřadnicích ln y′− 1/T (obr. 3.16). V
něm jsou především zakresleny experimentálně získané hodnoty pro tep-
loty T1 > T2 > T3 > T4. Protože rychlost difuzních přeměn roste s teplotou,
je y′T1

> y′T2
> y′T3

> y′T4
. Dále je z geometrie obrázku schematicky znázor-

něn výpočet veličin A a Q. Pomocí vypočítaných hodnot A a Q je určena
rovnice regresní přímky a tím i kinetika sledované přeměny. Pomocí Arrhe-
niova vztahu lze popsat a analyzovat mnoho difuzních izotermických po-
chodů. Setkali jsme se s ním již ve vztahu (6.18 2), který vyjadřuje růst difu-
zivity D s teplotou a kde je aktivační energie vyjádřena pomocí aktivační
entalpie difuze ∆Hd.

Exponenciální závislost rychlosti reakce na teplotě, definovaná Arrhe-
niovým vztahem (3.42a), je z formálního hlediska ve shodě s Maxwellovým-
Boltzmannovým rozdělením energie, formulovaným vztahem

W (E) = A (T ) exp
(
−E

kT

)
, (3.44)

2Viz knihu L. Ptáček a kol.: Nauka o materiálu I., Brno 2001.
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kde W (E) je pravděpodobnost, že atom dosáhne energie E, A(T ) je funkcí
teploty a jiných fyzikálních parametrů soustavy, E[ J] je energie, kterou si
můžeme představit jako celkovou energii E složenou ze střední energie
Estř a z navýšení (fluktuace) energie ∆E,E = Estř + ∆E, k[ J·K−1] je Bolt-
zmannova konstanta, T [ K] je absolutní teplota.

Z formální podobnosti vztahů (3.42) a (3.44) je zřejmé, že rychlost di-
fuzní reakce nebo fázové přeměny závisí na počtu reagujících částic s ener-
gií o hodnotu ∆E větší než je střední energie Estř reagující látky.

Nyní posud’me Arrheniův vztah z termodynamického hlediska. Víme
již, že teorie reakčních rychlostí vychází z předpokladu, že v soustavě exis-
tují soubory neboli komplexy atomů, které vlivem fluktuací dosahují ener-
gie potřebné k překonání energetické bariéry. Pokud máme na mysli fá-
zové přeměny, můžeme tyto komplexy považovat za jakousi formu před-
zárodků nové fáze, které jsou v dynamické rovnováze s matečnou fází.
Označíme-li aktivitu uvažovaných komplexů symbolem a∗ a aktivitu ma-
tečné fáze symbolem a, lze dynamickou rovnováhu mezi aktivovanými
komplexy a matečnou fází vyjádřit pomocí rovnovážné konstanty K∗ tak,
že K∗ = a∗/a. Změna volné entalpie ∆G∗, vyjádřená pomocí rovnovážné
konstanty a spojená s vytvořením aktivovaných komplexů, je

∆G∗ = −RT lnK∗ = −RT ln
a∗

a
, (3.45)

což lze převést do tvaru
a∗

a
= exp

−G∗

RT
. (3.46)

Podle Gibbsovy-Duhemovy rovnice je ∆G∗ = ∆H∗ − T∆S∗ a vztah (3.46)
proto můžeme převést do tvaru

a∗

a
= exp

(
−∆H∗

RT

)
exp

(
−∆S∗

R

)
. (3.47)

Teorie reakčních rychlostí dále předpokládá, že frekvence f vzniku, příp.
rozpadu aktivovaných komplexů při dynamické rovnováze je dána vzta-
hem

f = ν
a∗

a
. (3.48)

Pomocí (3.47) je možno vztah (3.48) převést do tvaru

f =
RT

Nh
exp

(
−∆H∗

RT

)
exp

(
−∆S∗

R

)
, (3.49)

kde n = kT/h je frekvence tepelných kmitů atomů.
Frekvence vzniku aktivovaných komplexu je úměrná rychlosti reakce.

Z porovnání vztahů (3.42) a (3.49) vyplývá, že z termodynamického hle-
diska není vyjádření rychlostí reakce Arrheniovou rovnicí postačující, ne-
bot’ nezahrnuje změnu entropie ∆S∗, která vyjadřuje změnu neuspořáda-
nosti polohy a pohybu reagujících atomů. Respektování entropické změny
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je důležité zejména tam, kde současně reaguje velký počet atomů, k čemuž
často dochází při fázových přeměnách v kovech i při chemických reakcích.

3.4.2 Rychlost nukleace

Rychlost nukleace vyjadřuje počet zárodků nové fáze vznikajících v jed-
notkovém objemu staré fáze za jednotku času. Může být stálá (stacionární)
nebo se může v závislosti na čase měnit. Za stacionárního stavu při NV

atomů v jednotkovém objemu bude N∗
V atomů vytvářet zárodky kritické

velikosti. Rychlost nukleace se označuje JN a u většiny fázových přeměn
se vyjadřuje vztahem

JN = νN∗
V =

kT

h
NV exp

(
−

∆g∗ + ∆g∗d
kT

)
, (3.50)

kde ∆g∗ je aktivační volní entalpie při tvorbě kritického zárodku; je to ener-
getická bariéra, kterou musí atom překonat při přechodu z matečné fáze do
zárodku nové fáze kritické velikosti, ∆gd je aktivační volná entalpie difuze
na krátkou vzdálenost; ve dvousložkových nebo vícesložkových sousta-
vách je ∆gd aktivační volná entalpie nejméně pohyblivé složky.

Velmi důležité je porozumět, jak se rychlost nukleace mění s teplotou u
přeměn probíhajících pod rovnovážnou teplotou (s přechlazením) i u pře-
měn probíhajících nad rovnovážnou teplotu (s přehřátím). Zatím chybí ex-
perimentálně ověřené údaje o některých hodnotách obsažených ve vztahu
(3.50), především údaje o velikosti ∆gd. Nemůžeme proto závislost JN na
teplotě vypočítat, ale jen odhadnut její trend následující úvahou. Vztah (3.50)
napíšeme jako součin dvou exponenciálních členů

JN = νNV exp
(
−∆g∗

kT

)
exp

(
−∆gd

kT

)
. (3.51)

První člen v (3.51) se nazývá termodynamický nebot’ závisí na termody-
namické hnací síle přeměny ∆G. Vyjadřuje pravděpodobnost, že elemen-
tární částice dosáhne při dané teplotě okamžité energie ∆g∗. Hodnota ∆g∗

klesá s rostoucím čtvercem hodnoty přechlazení i přehřátí ∆TV souladu se
vztahem (3.19) a pravděpodobnost jejího dosažení proto s rostoucím |∆T |
vzrůstá, což označují křivky a na obr. 3.17a,b.

Druhý člen v (3.51) se nazývá kinetický, protože se vztahuje k překo-
nání energetické bariéry při difuzi atomů, které se musí přesunout k místu
tvorby zárodků. Tento člen představuje pravděpodobnost, že elementární
částice dosáhnou při dané teplotě potřebnou hodnotu okamžité energie ∆gd.
Tato pravděpodobnost s rostoucí teplotou roste, jak ukazují křivky b na
obr. 3.17a,b. Nyní je třeba z termodynamického a kinetického členu složit
celkovou závislost JN na teplotě, tj. JN (T ). Vyjadřují ji křivky c na obr. 3.17a,b.
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Obrázek 3.17: Závislost rychlosti nukleace JN na teplotě u přeměn probíhajících s: a) pře-
hřátím, b) přechlazením, c) JN (T ) zakreslena v jiném měřítku

Někdy se křivka c pro přeměny s přechlazením kreslí způsobem uvede-
ným na obr. 3.17c, což je jen otázkou zvoleného měřítka a na podstatě této
závislosti to nic nemění.

Uvážíme-li oblast přeměn s přehřátím (T > Tt), vidíme, že uvažované
křivky a, b působí ve stejném smyslu – zvyšují JN při rostoucím T . Stejný
trend proto vyjadřuje i výsledná křivka ukazující, že u těchto přeměn roste
rychlost nukleace JN s růstem teploty T .

Jinak je tomu u přeměn s přechlazením (T < Tt). Zde křivka b) ukazuje
na růst JN s růstem teploty. Křivka a však má opačný trend – vyjadřuje
růst JN s poklesem teploty. Výsledná křivka c ≡ JN (T ) je proto křivka s
maximem („nosem“) v teplotní oblasti, kdy oba uvažované vlivy působí
stejně příznivě, vzájemně vyrovnaně. Na výsledné křivce je JN = 0 (kine-
tická rovnováha) při (T = Tt), nebot’ zde je ∆T = 0, ∆G = 0 (termodyna-
mická rovnováha) a ∆g∗ → ∞ (3.6). V teplotní oblasti mezi Tt a „nosem“
křivky se sice projevuje příznivý vliv křivky b, avšak rozhodující vliv má
brzdící vliv křivky a, který však s rostoucím přechlazením slábne. Při tep-
lotách pod „nosem“ křivky by závislost a stále více podporovala růst JN ,
avšak zde se již začne stále silněji uplatňovat brzdící vliv b. Souhrnně lze
říci, že při menším přechlazení (nad nosem) je rychlost nukleace JN příz-
nivě ovlivňována dobrou možností difuze, brzděna je termodynamickým
faktorem ∆g∗. Při větším přechlazením (pod nosem) je tomu naopak: JN

je podporována termodynamicky (∆g∗), je bržděna zhoršující se možností
difuze. Z hlediska budoucích úvah je na místě zdůraznit, že reciprokou
veličinou rychlosti je čas, rostoucí rychlost nukleace proto znamená zkra-
cování doby potřebné pro nukleaci. Později uvidíme, že obr. 3.17 má vztah
ke konkrétním fázovým přeměnám.
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Obrázek 3.18: Energetické poměry na mezifázovém rozhraní L-S při T < Tm

3.4.3 Rychlost růstu

Zárodek určitého tvaru a velikosti je charakterizován svým lineárním roz-
měrem (koule poloměrem, rotační elipsoid hlavní a vedlejší osou, jehlice
délkou a tloušt’kou, apod.). Rychlost růstu vyjadřuje přírůstek charakteris-
tického lineárního rozměru zárodku za jednotku času. Označuje se sym-
bolem JG. Z hlediska rychlosti růstu je třeba rozeznávat fázové přeměny
řízené ději v bezprostřední blízkosti fázového rozhraní mezi rostoucím zá-
rodkem a matečnou fází a fázové přeměny řízené difuzí.

3.4.3.1 Rychlost růstu řízená ději na mezifázovém rozhraní

Děje na mezifázovém rozhraní, řídícími rychlost růstu u některých fázo-
vých přeměn (např. u krystalizace čistých kovů a u alotropických přeměn),
rozumíme přeskoky atomů ze staré fáze přes mezifázové rozhraní na po-
vrch nové fáze, neboli difuzi na krátkou vzdálenost. Problematiku vysvět-
líme na příkladu krystalizace.

Na obr. 3.18 jsou znázorněny energetické poměry na mezifázovém roz-
hraní tavenina-tuhá fáze při teplotě T < Tm, kdy může proběhnout krysta-
lizace, nebot’ hnací síla krystalizace ∆GL→S < 0.

Nejdříve určíme frekvenci přeskoků atomů f za předpokladu, že každý
atom může uskutečnit přeskok v 6 směrech, v jednom směru tedy přeska-
kuje 1/6 atomů. Podle obr. 3.18 je frekvence přeskoků fL→S z taveniny L do



3.4. RYCHLOSTI FÁZOVÝCH PŘEMĚN 37

tuhé fáze S.

fL→S =
ν

6
nB exp

[
−
(
∆g − 1

2∆G
)

kT

]
, (3.52)

frekvence přeskoků fS→L z tuhé fáze do taveniny je

fL→S =
ν

6
nA exp

[
−
(
∆g + 1

2∆G
)

kT

]
, (3.53)

Ze vztahů (3.52) a (3.53) plyne, že fL→S > fS→L, nebot’, (∆gd − 1
2∆G) <

(∆gd + 1
2∆G) a výsledná frekvence přeskoků z taveniny do tuhé fáze je

(fL→S)výsl = fL→S − fS→L. Za předpokladu, že položíme nA = nB = n, a
protože ν = kT/h , je

(fL→S)výsl =
kT

6h
n exp

(
−∆gd

kT

)(
exp

∆G

2kT
− exp

−∆G

2kT

)
. (3.54)

Protože ∆G je obvykle mnohem menší než 2kT , můžeme použít aproxi-
maci expx ≈ 1 + x pro malá x. Vztah (3.54) se po této úpravě a po zjedno-
dušení změní na

(fL→S)výsl =
n

6h
exp

(
−∆gd

kT

)
G. (3.55)

Nyní nebudeme provádět přesné výpočty, ale jen odhadneme trendy zá-
vislostí. Můžeme tedy použít pro vyjádření ∆G přibližný vztah (5.112 3) i
když víme, že jeho platnost je omezena jen na blízké okolí zleva i zprava
teploty Tm. Tento vztah udává lineární závislost |∆G| na |∆T | = |Tm − T |.

Podobná závislost mezi |∆G| a |∆T | opravdu existuje (např. obr. 5.39 4),
ve skutečnosti však není v širším intervalu teplot lineární. Současně vez-
meme v úvahu, že rychlost růstu JG je dráha, o kterou se mezifázové roz-
hraní posune za jednotku času, což při průměru atomu d vede k JG ≈
f(L→S)výsl

d/n. Po zavedení obou zmíněných vztahů do (3.55) dostaneme ko-
nečný výraz

JG ≈
d

6h
exp

(
−∆gd

kT

)
∆Hm∆T

Tm
, (3.56)

kde ∆T = Tm − T značí přechlazení při T < Tm a přehřátí při T > Tm.
Veličina ∆Gd má podobný význam jako ve vztahu (3.51); ovlivnění této
veličiny teplotou je zanedbatelné.

Podobně jako u rychlosti nukleace bude nás i nyní zajímat závislost
rychlosti růstu JG na teplotě přeměny T (obr. 3.19a,b), a to jak u pře-
měn probíhajících při T > Tm (s přehřátím), tak u přeměn probíhajících

3Viz knihu L. Ptáček a kol.: Nauka o materiálu I., Brno 2001.
4Viz knihu L. Ptáček a kol.: Nauka o materiálu I., Brno 2001.
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při T < Tm (s přechlazením). Opět z důvodu možné srovnatelnosti s ně-
kterými později uvedenými diagramy nanášíme teplotu T na svislou osu
a rychlost růstu JG na vodorovnou osu. Vliv teploty se projevuje jen dva-
krát, a to v exponenciálním kinetickém členu a termodynamickém členu
veličinou ∆T , příp. ∆G. Vlivem kinetického členu roste JG exponenciálně
s teplotou, což v obr. 3.19 naznačuje křivka b) pro obě oblasti teplot (T >
Tm, T < Tm). Při T = 0 je JG = 0. Vlivem termodynamického členu |∆T |,
příp. |∆G|, roste JG téměř lineárně v závislosti na |∆T |; to znázorňují v
obr. 3.19 křivky a, které mají v každé teplotní oblasti jiný sklon, protože
|∆T | roste od Tm směrem nahoru (přehřátí) i směrem dolů (přechlazení).
Na obou těchto křivkách je JG = 0 při teplotě Tm, protože zde je ∆T = 0.
Nyní je třeba z pomocných dílčích závislostí znázornit celkovou závislost
JG(T ). V oblasti přeměn s přehřátím (T > Tm) vidíme, že oba dílčí vlivy a),
b) působí ve stejném smyslu. Stejný trend proto vykazuje i výsledná křivka
c, která znázorňuje, že rychlost růstu JG roste s teplotou.

Jinak je tomu u přeměn s přechlazením (T < Tm): zde křivka b ukazuje
na růst JG s růstem teploty. Křivka a však má opačný trend – vyjadřuje
růst JG s poklesem teploty. Výsledná křivka c je proto křivkou s maximem
(„nosem“) v teplotní oblasti, kde oba dílčí vlivy působí vyrovnaně, stejně
příznivě. Na výsledné křivce je JG = 0 (kinetická rovnováha) při T = Tm,
nebot’ zde je ∆T = 0 a proto i ∆G = 0 (termodynamická rovnováha).
V teplotní oblasti mezi Tm a „nosem“ výsledné křivky se sice projevuje
příznivý vliv křivky b, avšak rozhodující vliv má brzdící účinek křivky a,
který však s rostoucím přechlazením slábne. Při teplotách pod „nosem“
křivky by závislost a stále více podporovala růst JG, kdyby nebylo brzdí-
cího vlivu křivky b, který působí stále výrazněji. Souhrnně je možno říci, že
při menším přechlazení (nad nosem) je rychlost růstu JG příznivě dobrou
možností difuzních přeskoků atomů, bržděna je termodynamickým fakto-
rem – malou hodnotou ∆T a veličinami, které z ní vyplývají. Při větším
přechlazení (pod nosem) je tomu naopak: JG je podporována zvyšující se
hodnotou ∆T , bržděna je zhoršující se možností difuze.

Na obr. 3.19 je teoretickou teplotou teplota tavení Tm. Podobné závis-
losti platí i u jiných přeměn s obecným označením teoretické teploty Tt.

Nyní nás bude zajímat otázka, jak probíhá růst řízený ději na mezifá-
zovém rozhraní v závislosti na čase. Označíme-li obecně lineární rozměr
rostoucího zárodku symbolem x, je podle definice

JG =
dx

dτ
. (3.57)

Veličina JG daná vztahem (3.56) není funkcí času. Proto integrací (3.57) do-
staneme

x = JGτ. (3.58)

Říkáme, že v tomto případě probíhá lineární růst.
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Obrázek 3.19: Závislost rychlosti růstu JG na teplotě u fázových přeměn probíhajících s:
a) přehřátím, b) přechlazením

3.4.3.2 Rychlost růstu řízená difuzí na dlouhou vzdálenost

V této kapitole se budeme zabývat růstem zárodků ve slitinách, kde mateč-
nou fází je tuhý roztok. Obsahuje-li zárodek nové fáze méně přísady než
je ve fázi matečné, vytěsňuje při svém růstu přísadu před mezifázové roz-
hraní a ta je prostřednictvím difuze odváděna do vzdálenějších míst fáze
původní. Obsahuje-li zárodek nové fáze více přísady než je ve fázi ma-
tečné, vyžaduje jeho růst difuzní přenos přísady ze staré k hranici nové
fáze. V obou případech se uplatňuje difuze ve velkém objemu matečné fáze
a říkáme, že jde o difuzi na dlouhou vzdálenost.

Jak jsme vysvětlili již dříve, jsou zárodky nové fáze obvykle ohraničeny
koherentními a semikoherentními rovinnými fazetami a zakřiveným ne-
koherentním rozhraním. Při svém růstu se vyvíjí do tvaru, který závisí na
relativních rychlostech migrace jednotlivých částí rozhraní. Víme již, že ko-
herence při růstu zárodku velmi brzy zaniká, že semikoherentní rozhraní
se pohybuje obtížně vytvářením stupňů a jejich posunem ve směru hranice
a že nejpohyblivější je rozhraní nekoherentní, které se může snadno přesu-
novat ve směru své normály. Nyní se budeme postupně zabývat migrací
rovinného a zakřiveného semikoherentního rozhraní a hranovým mecha-
nismem migrace semikoherentního rozhraní.

3.4.3.2.1 Růst rovinného nekoherentního rozhraní Již několikrát jsme
uvedli, že nekoherentní mezifázové rozhraní bývá obvykle zakřivené. Při-
bližně rovinné nekoherentní rozhraní vzniká při nukleaci velkého počtu
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zárodků nové fáze na hranici zrna původní fáze. Tyto zárodky vytvoří spo-
jitou vrstvu a společně rostou bočním růstem ve směru kolmém k hranici
(obr. 3.20a). Uvedený děj budeme sledovat jako izotermický při teplotě Tsk,
tj. při přechlazení ∆T = Tt−Tsk u slitiny I s objemovou koncentrací přísady
c0[ mol·m−3] v soustavě se zmenšující se rozpustností při poklesu teploty
(obr. 3.20b), kde starou fází je přesycený tuhý roztok α a na jeho hranicích
nukleovala a bočním růstem roste souvislá vrstva sekundární fáze β (pre-
cipitátu). Na začátku růstu byla tloušt’ka vrstvy β nulová, v průběhu růstu
označíme její okamžitou poloviční tloušt’ku x a okamžitou rychlost růstu
JG = dx/dτ (obr. 3.20c). Protože koncentrace cβ přísady v precipitátu je
vyšší než celková koncentrace c0 ve slitině, odčerpává precipitát při svém
růstu přísadu B z matečné fáze α a ta je proto v oblasti přilehlé k precipi-
tátu ochuzena (obr. 3.20d). Protože rozhraní α-β je nekoherentní, je možno
předpokládat růst řízený difuzí a vytvoření místní rovnováhy na mezifá-
zovém rozhraní. To znamená, že obsah B v matrici α na mezifázovém roz-
hraní bude mít rovnovážnou hodnotu ce. Rychlost růstu JG bude záviset
na koncentračním gradientu na mezifázovém rozhraní (dc/dx)α-β

x=xτ
, který

budeme nadále zjednodušeně označovat jako dc/dx.
Má-li se jednotková plocha rozhraní α-β posunout za čas dτ o vzdá-

lenost dx ze své původní polohy, musí se za tuto dobu přeměnit objem
materiálu o velikosti 1 · dx z fáze α o složení ce na fázi β o složení cβ , kde
ce a cβ je udáno objemovou koncentrací B[ mol·m−3]. Na tuto přeměnu se
spotřebuje množství nB = (cβ − ce)dx molů B a toto množství B musí být
za čas dτ přeneseno pomocí difuze z fáze α k mezifázovému rozhraní α-β.
Množství látky B, přenesené jednotkovou ploškou za čas dτ , je podle prv-
ního Fickova zákona nB = Ddc/dx, kde D je koeficient vzájemné difuze. Z
uvedeného vyplývá, že (cβ − ce)dx = D(dc/dx)dτ a že rychlost růstu JG je
dána vztahem

JG =
dx

dτ
=

D

cβ − ce

dc

dx
. (3.59)

Při pokračujícím růstu precipitátu β musí být přísada B dopravována k roz-
hraní α-β ze stále vzdálenějších míst fáze α a gradient koncentrace dc/dx
ve vztahu (3.59) se proto v závislosti na čase τ zmenšuje.

Čitatel na pravé straně vztahu (3.59) může být upraven pomocí zjed-
nodušeného koncentračního profilu uvedeného na obr. 3.20e. Z tohoto ob-
rázku je vidět, že

∆c0 = c0 − ce. (3.60)

Ze zákona o zachování hmoty vyplývá, že množství látky B odebrané z
fáze α se musí rovnat množství látky B spotřebované na růst precipitátu β.
To znamená, že vyšrafované plochy na obr. 3.20e jsou stejné, tedy

(cβ − c0) x =
1
2
∆c0L, (3.61)
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Obrázek 3.20: K rychlosti migrace JG rovinného nekoherentního mezifázového rozhraní
α-β, schémata k odvození vztahů (3.59) až (3.67).

odkud

L =
2(cβ − c0)

c0 − ce
, (3.62)

kde L je vzdálenost před mezifázovým rozhraním ve fázi α, v níž je snížena
koncentrace B pod hodnotu c0.

Pomocí (3.60) a (3.62) můžeme vyjádřit v (3.59)

D
dc

dx
∼= D

∆c0

L
= D

∆c0

2(cβ − c0)x
. (3.63)

Po dosazení (3.63) do (3.59) dostaneme vztah

JG =
dx

dτ
∼= D

(∆c0)2

2(cβ − c0)(cβ − c0)x
, (3.64)

z něhož je vidět, že rychlost růstu JG se zmenšuje s narůstající tloušt’kou x
precipitátu β v závislosti na čase τ . Ve vztahu (3.64) převedeme 2x na levou
stranu a dτ na pravou stranu, integrujeme a odmocníme, čímž dostaneme

x ∼=
∆c0

[(cβ − ce)(cβ − c0)]
1
2

(Dτ)
1
2 , (3.65)

z čehož vyplývá, že závislost x(τ) je parabolická.
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Pro zjednodušení vztahu (3.65) můžeme často předpokládat (při velké
hodnotě cβ), že (cβ − ce) ≈ (cβ − c0), čímž dostaneme

x ∼=
∆c0

cβ − ce
(Dτ)

1
2 . (3.66)

Dosazením (3.66) do (3.63) nebo derivací (3.66) podle času dostaneme pro
závislost JG na čase vztah

JG =
dx

dτ
∼=

(∆c0)
2(cβ − ce)

(
D

τ

) 1
2

, (3.67)

ukazující – podobně jako (3.63) – že JG se v průběhu bočního růstu fáze β

zmenšuje, a to v závislosti na
(

1
τ

)1/2.

Poznámka: Ve vztazích (3.59) až (3.67) je možno nahradit objemové koncentrace cB molár-
ními zlomky NB, kde NB = cB(Vm)B, za předpokladu, že molární objem (Vm)B je kon-
stantní.

Dokončili jsme úvahy o izotermickém bočním růstu fáze β ve fázi α
při určité skutečné teplotě přeměny Tsk, tj. při určitém přechlazení ∆T =
Tt−Tsk. Nyní zaměříme svou pozornost na to, jak velikost přechlazení‘∆T
ovlivňuje kinetiku izotermického bočního růstu. Omezíme se pouze na roz-
bor vztahu (3.67), v němž prozatím eliminujeme vliv doby růstu τ tím, že
ji budeme uvažovat stejnou při všech hodnotách ∆T . Teplotou přeměny
a přechlazením jsou nejvíce ovlivněny veličiny ∆c0 (která vyznačuje pře-
sycení tuhého roztoku α před začátkem precipitace) a koeficient difuze D.
Z obr. 3.21a vidíme, že ∆c0 roste s rostoucím ∆T a vlivem toho se zvětšuje
i rychlost JG (obr. 3.21b). Ze vztahu (9.26) je dále zřejmé, že se JG zvyšuje
se zvětšující se hodnotou D, což je podporováno vyšší teplotou přeměny
Tsk a tudíž menším přechlazením ∆T (obr. 3.21b). Celková závislost JG na
∆T je v obr. 3.21b vyjádřena křivkou s maximem v teplotní oblasti, kde se
vlivy ∆c0 a D na JG projevují stejně příznivě, žádný z nich nepůsobí jako
omezující.

Kdybychom nyní zahrnuli podle (3.67) i vliv času τ na rychlost JG při
dané teplotě přeměny, usoudili bychom, že křivka JG(T ) na obr. 3.21b by
při delších časech τ byla plošší.

Právě dokončené úvahy o migraci rovinného nekoherentního mezifá-
zového rozhraní α-β lze podle odvozených vztahů shrnout takto:

• podle (3.64) a (3.65) je x úměrné (Dτ)
1
2 ,

• podle (3.63) je JG úměrné D/x a podle (3.66) je JG úměrné (D/τ)
1
2 ,

• podle (3.66) a obr. 3.21 je JG úměrné ∆c0D.
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Obrázek 3.21: Vliv přechlazení na rychlost růstu JG při rovinném nekoherentním mezi-
fázovém rozhraní α-β

α

α

a)

b)
c)

β hranice
zrn

přísada

Obrázek 3.22: Urychlení podélného a bočního růstu precipitátu β difuzí po hranicích zrn

Precipitáty nové fáze na hranicích zrn staré fáze obvykle netvoří spoji-
tou vrstvu (jejíž boční růst jsme dosud popisovali), ale vyskytují se jako oje-
dinělé částice. Jejich růst je mnohem rychlejší, než by odpovídal objemové
difuzi přísady B. Důvodem je usnadnění difuze hranicemi zrn (obr. 3.22).
Růst takové alotriomorfní částice β zahrnuje tři děje: a) objemovou difuzi
přísady B zrny a k jejich hranicím; b) difuzi přísady B podíl hranic zrn
α-α, které někde navazují na částici β; c) difuzi přísady B podél mezifá-
zového rozhraní α-β, která umožňuje rychlé tloustnutí částice β. Uvedený
mechanismus má velký význam pro difuzi substitučních atomů a spíše při
nižších než vysokých teplotách. Je-li přísadou intersticiální prvek, je usnad-
nění jeho difuze hranicemi zrn nevýznamné, nebot’ v tomto případě pro-
bíhá rychle a snadno i objemová difuze.

3.4.3.2.2 Podélný růst desek a jehlic nové fáze V kapitole 5 5 jsme mezi
jinými termodynamickými veličinami definovali Gibbsovu volnou energii
neboli volnou entalpii G a vysvětlili jsme její význam pro stav termody-
namické rovnováhy i pro fázové přeměny. Obecně jsme vysvětlili, že G je
funkcí teploty T a tlaku p, jejími výpočty jsme se však nezabývali. Abychom
mohli porozumět výkladům v této kapitole, je nutné nejdřív doplnit naše
znalosti z termodynamiky vysvětlením kapilárního neboli Gibbsova-Thomsonova
efektu.

5Viz knihu L. Ptáček a kol.: Nauka o materiálu I., Brno 2001.
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Při výpočtu volné entalpie tuhé látky se obvykle uvažuje její množství
ve velikosti jednoho molu ve stavu dokonalého monokrystalu. Neberou se
v úvahu povrchy, hranice zrn, mezifázová rozhraní a jiné poruchy krysta-
lové mřížky, jako jsou například dislokace. Všechny tyto poruchy však v
reálných pevných látkách existují a zvyšují jejich volnou entalpii. Minima
volné entalpie, tj. stavu úplné teromodynmické rovnováhy, by bylo dosa-
ženo, až by všechny poruchy byly odstraněny žíháním, což v reálném čase
není uskutečnitelné.

Mezifázové rozhraní může mít velký význam v úplných počátcích fá-
zových přeměn, kdy se vytvoří velmi malé částice nové fáze β v původní
fázi α (obr. 3.23a). Jestliže na směs fází α + β působí atmosferický tlak, jsou
částice fáze β vystaveny navíc dodatkovému tlaku ∆p, který vzniká vlivem
zakřivení mezifázového rozhraní α-β. Jestliže je σ povrchová energie roz-
hraní α-β a částice mají tvar koule s poloměrem r, je ∆p = 2σ/r, kde ∆p
je kapilární tlak; při zakřivení charakterizovaném poloměry křivosti r1 a r2

platí obecně, že ∆p = σ
(

1
r1

+ 1
r2

)
. Kapilární tlak se sčítá s tlakem (např.

atmosferickým), který by působil na látku s rovným povrchem (r = ∞).
Vlivem kapilárního tlaku ∆p vzroste volná entalpie o hodnotu ∆G =

∆pV , a proto se volná entalpie uvažované malé částice β zvýší o hodnotu

∆Gσ =
2σVm

r
, (3.68)

kde Vm je molární objem fáze β.
Přírůstek volné entalpie ∆Gσ (3.68), vyvolaný mezifázovou energií σ a

poloměrem zakřivení r dané fáze, se nazývá kapilární jev neboli Gibbsův-
Thomsonův jev. Obdobný vztah pro výpočet ∆Gσ je možno odvodit i pro
částice jiného než kulového tvaru (rotační elipsoidy).

Nyní zakreslíme hodnotu ∆Gσ do entalpického diagramu (obr. 3.23b),
jehož podstatu také dosud neznáme. Entalpický diagram odpovídá určité
konstantní teplotě v rovnovážném diagramu. Na jeho vodorovnou osu se
nanáší obsah složek v soustavě, stejně jako v rovnovážném diagramu, ve
svislém směru se vynáší hodnoty volné entalpie jednotlivých rovnováž-
ných fází nebo jejich směsí přidané teplotě a složení soustavy. Volná ental-
pie směsi fází je znázorněna úsečkou, jejíž krajní body vyznačují hodnoty
volné entalpie fází, z kterých je směs složena. Na obr. 3.23b vidíme křivku
Gα matečné fáze α, křivky Gβ

∞ a Gβ
r nové fáze (precipitátu) β s rovinným

povrchem (r = ∞) a s povrchem koule o poloměru r. Přímka G(α+β) je v
obou případech společnou tečnou ke křivkám Gα a Gβ . Dotykový bod této
tečny na křivce Gα určuje rovnovážná složení N∞ a Nr fáze α, která je v
rovnováze s precipitátem β příslušného tvaru. Hlavním přínosem tohoto
entalpického diagramu pro náš další výklad je zjištění, že v rovnováze s
částicí β o poloměru r = ∞ je fáze α o složení Nα

∞, v rovnováze s částicí β
o poloměru r = r je fáze α o složení N r

α , kde Nα
∞ < Nα

r . Tento výsledek má
vliv na kinetiku růstu.
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Obrázek 3.23: Kapilární neboli Gibbsův-Thomsonův jev

Po doplnění potřebných poznatků z termodynamiky se nyní budeme
věnovat problematice podélného růstu desek nové fáze β ve staré fázi α.
Představíme si precipitát β (obr. 3.24a) ve tvaru destičky s konstantní tloušt’-
kou a válcovitě zakřiveným nekoherentním členem o poloměru r (r1 = r,
r2 = ∞). Koncentrační profil přes zakřivené rozhraní je uveden na obr. 3.24b.
Vlivem Gibbsova-Thomsonova jevu je nyní rovnovážná koncentrace mat-
rice před mezifázovým rozhraním α-β vyšší než byla na obr. 3.20e, cr >
C∞. Koncentrační gradient, umožňující difuzi ze vzdálených oblastí α k
postupujícímu čelu precipitátu β, je proto zmenšen na ∆c/∆x, kde ∆c =
c0 − cr a ∆x je charakteristická vzdálenost difuze. Difuze se v tomto pří-
padě musí uvažovat ve válcových souřadnicích, což je složitější. Nicméně
bylo zjištěno, že v tomto případě ∆x = kr, kde k je číselná konstanta, k ≈ 1.
Analogicky ke vztahům (3.59) a (3.63) bude rychlost podélného růstu

∆JG =
Dα

B

cβ − cr

∆c

kr
. (3.69)

Rozdíl koncentrace ∆c, který umožňuje difuzi, bude záviset na polo-
měru zakřivení r čela precipitátu β, jak je zřejmé z obr. 3.23.

Rozdíl koncentrace ∆c, příp. ∆N , který umožňuje difuzi, bude záviset
na poloměru zakřivení r čela precipitátu β, jak je zřejmé z obr. 3.23b a z
obr. 3.25. Za určitých zjednodušujících předpokladů platí vztah

∆c = ∆c0

(
1− r∗

r

)
, (3.70)

kde ∆c = c0 − cr, ∆c0 = c0 − ce; r∗ je kritický poloměr čela zárodku.
Je to takový poloměr čela zárodku, při němž je ∆c = 0 (obr. 3.23b).

Za předpokladu, že molární objem Vm = konst., mohou se vztahy (3.69)
a (3.70) zkombinovat, čímž vznikne

JG =
Dα

B ·∆c0

k(cβ − cr)r

(
1− r∗

r

)
, (3.71)
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Obrázek 3.24: Růst deskového precipitátu řízený difuzí na dlouhou vzdálenost: a) tvar
deskového precipitátu β, b) koncentrační profil látky B podél čáry A-A’ v obr. a).

Obrázek 3.25: Gibbsův-Thomsonův jev a jeho vliv na fázový diagram

z čehož vyplývá, že J je úměrné τ , čelní (podélný) růst precipitátu β je v
závislosti na čase lineární.

Vztah (3.71) platí v případech, kdy difuzní pole (tj. oblasti, z nichž je
pomocí difuze přenášena přísada B ze vzdálené fáze α postupujícímu čelu
precipitátu β) jednotlivých precipitátů se vzájemně nepřekrývají.

Stejné vztahy, jako jsou (3.70) a (3.71), mohou být odvozeny pro čelní
(podélný), difuzí na dlouhou vzdálenost řízený růst jehlicovitého zárodku.
Rozdíl je v tom, že čelo jehlice není ohraničeno válcovou plochou jako
deska, ale plochou kulovou, takže hodnota ∆Gσ = 2σ ·Vm/r. Hodnota kri-
tického poloměru r∗ v (3.70) a (3.71) bude proto jiná pro deskový a jiná pro
jehlicový zárodek. Oba výpočtové vztahy jsou pro jehlicový zárodek do-
konce vhodnější, nebot’ se dá lépe předpokládat, že jeho růst je opravdu ří-
zen objemovou difuzí. Na čele deskových zárodků se ve směru šířky desky
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Obrázek 3.26: Boční růst precipitátu β příčným pohybem stupňů

(r = ∞) mohou vyskytnout fazety, které přispívají ke stupňovitému růstu.

3.4.3.2.3 Boční růst deskovitých precipitátů Již dříve probraný model
migrace rovinného nekoherentního rozhraní platí pro rozhraní s vysokým
stupněm akomodace, které nelze obecně očekávat. Povrch deskovitých pre-
cipitátů bývá obvykle ohraničen širokými fazetami, které jsou semikohe-
rentní a jejich migrace se uskutečňuje příčným pohybem výstupků.

Představme si jednoduchý případ, kdy boční růst deskovitého precipi-
tátu probíhá příčným pohybem lineárních stupňů o stejné délce λ a výšce h
(obr. 3.26).

Je zřejmé, že poloviční tloušt’ka precipitátu roste rychlostí

JG =
uh
λ

, (3.72)

kde u je rychlost příčného pohybu stupňů.
Problematika migrace stupňů je velmi podobná problematice čelního

růstu precipitátu. Potřebných změn ve složení, umožňujících migraci, musí
být dosaženo difuzí na dlouhou vzdálenost směrem ke stupňům nebo od
nich. Jsou-li konce stupňů nekoherentní, je cαβ stejné jako u migrace ro-
vinného nekoherentního rozhraní a růst bude řízen difuzí. Pro rychlost u
příčného pohybu stupňů platí vztah

u =
D∆x

k(cβ − cαβ)h
, (3.73)

který v podstatě odpovídá vztahu (3.71) s h ∼= r, cr = cαβ , tj. bez Gibbsova-
Thomsonova jevu. Kombinací vztahů (3.72) a (3.73) dostaneme

JG =
D∆x

k(cβ − cαβ)λ
, (3.74)

odkud vidíme, že JG je nepřímo úměrná délce stupňů λ.
Vztah (3.74) platí pro stav, kdy je pro boční růst k dispozici dostatečné

množství výstupků. Ty mohou být vytvářeny různými mechanismy, jako
opakovanou povrchovou nukleací, spirálovým růstem, protínáním preci-
pitátů apod. Z těchto mechanismů pouze spirálový růst vytváří stupně se
stejnou délkou λ.
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Obrázek 3.27: Objemy staré a nové fáze v průběhu fázové přeměny

3.4.4 Celková rychlost fázové přeměny; kinetické rovnice, křivky
a diagramy fázových přeměn

Časový průběh fázových přeměn se vyjadřuje pomocí celkové rychlosti
přeměny. Ta je definována jako objem nové fáze, vznikající v jednotkovém
objemu staré fáze za jednotku času. Celková rychlost přeměny v závislosti
na čase je vyjádřena kinetickou rovnicí. Kinetická křivka vyjadřuje závis-
lost relativního objemu nové fáze na čase. Kinetický diagram ukazuje ča-
sový průběh přeměny v daném materiálu v závislosti na teplotě.

Schéma pro značení veličin, které budeme v souvislosti s celkovou rych-
lostí přeměn používat, je na obr. 3.27.

3.4.4.1 Celková rychlost homogenní fázové přeměny – kinetická rov-
nice a kinetická křivka

Homogenní přeměny se vyznačují tím, že u nich neexistuje energetická ba-
riéra nukleace. Ta zcela vymizí, jestliže se hodnota povrchové volné ental-
pie blíží k nule. Stane-li se původní fáze nestabilní, je za těchto podmínek
pravděpodobnost přeměny stejná ve všech místech původní fáze a dochází
k homogenní přeměně, která probíhá současně v celé soustavě. Požadavek
nulové nebo aspoň přibližně nulové povrchové volné entalpie znamená,
že se nesmí vytvořit zřetelné mezifázové rozhraní mezi novou a starou
fází. Tato podmínka může být splněna u některých uspořádávacích procesů
nebo při vytvoření neostré široké hranice mezi fázemi, které mají podob-
nou strukturu, ale odlišné složení a mřížkový parametr. To odpovídá typu
fluktuace, jejíž příklad je znázorněn na obr. 9.XX. Ten znázorňuje počáteční
malé přeskupení atomů ve zbylých objemech původní fáze, která mohou
nastat např. při rozpadu přesyceného tuhého roztoku, probíhajícího v ur-
čitém rozmezí teplot a složení (spinodální rozpad).

Nejjednodušší případ nastává při přeměně, jejíž kinetika je určena pouze
rychlostí růstu, protože všechny zárodky se vytvoří na začátku přeměny
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Obrázek 3.28: Nukleace všech zárodků na začátku přeměny a jejich další růst
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čas

pod́ıl fáźı
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Obrázek 3.29: Kinetická křivka homogenní fázové přeměny – podle vztahu (3.76)

(obr. 3.28). V tomto případě je celková rychlost přeměny úměrná okamži-
tému objemu staré fáze, což u přeměny α → β značí

dV β

dτ
= κ

(
V − V β

)
, (3.75)

kde dV β/dτ je celková rychlost přeměny, V je celkový objem soustavy a
původní objem staré fáze α, V β je objem nové fáze β, vytvořený za dobu
dτ , κ je rychlostní konstanta fázové přeměny.

Při řešení diferenciální rovnice (3.75) použijeme substituci V − V β = x,
z čehož plyne −dV β = dx. Integrací v rozmezí časů τs = 0 a τ , kterým
podle obr. 3.27 odpovídají objemy V a (V − V β) najdeme řešení

ξ =
V β

V
= 1− exp (−κτ) , (3.76)

kde ξ je relativní objem nové fáze β vytvořený za dobu τ ; je to objem nové
fáze V β vytvořený z jednotkového objemu staré fáze.

Vztah (3.76) je kinetická rovnice homogenní fázové přeměny, graficky
znázorněná na obr. 3.29. Celková rychlost fázové přeměny je

ξ̇ =
dξ

dτ
= κ exp(−κτ). (3.77)

Rychlost homogenní izotermické přeměny se v průběhu času zmenšuje
(obr. 3.29). Závislost rychlostní konstanty k na teplotě můžeme v prvním
přiblížení vyjádřit Arrheniovou rovnicí (3.42).
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3.4.4.2 Celková rychlost heterogenní fázové přeměny – kinetické rov-
nice, kinetické křivky a kinetický diagram

Heterogenní přeměny, mezi něž patří většina fázových přeměn, zahrnují
tvorbu zárodků nové fáze a jejich růst. To znamená, že v určité etapě po
zahájení přeměny je možno zřetelně odlišit (např. mikroskopicky) oblasti,
kde už přeměna proběhla, od oblastí zaujímaných původní, dosud nepře-
měněnou fází. Zárodky nové fáze se u těchto přeměn tvoří přednostně v
určitých místech staré fáze. Při nukleaci je třeba překonat energetickou ba-
rieru, způsobenou kladným členem povrchové volné entalpie, který cha-
rakterizuje tvorbu mezifázového rozhraní mezi novou a starou fází a při
malé velikosti zárodků převažuje nad záporným členem objemové volné
entalpie, který je spojen se vznikem určitého objemu nové stabilnější fáze.
Energetická bariéra dosahuje maxima při kritické velikosti zárodku; čím je
toto maximum větší, tím menší je rychlost nukleace.

Nejjednodušší situace je v jednosložkové soustavě, kde jediným ome-
zujícím dějem je přechod atomů mezifázovou hranicí. Experimentálně bylo
určeno, že téměř u všech přeměn tohoto druhu se kterýkoliv rozměr trans-
formované oblasti se mění lineárně s časem a rychlost přechodu se s rostou-
cím časem nemění. Hranice nové fáze se pohybuje konstantní rychlostí JG.

Vztah pro vyjádření celkové rychlosti přeměny je poměrně složitý a od-
vozuje se v několika krocích:

1. objem jednoho zárodku kulovitého tvaru nové fáze β v okamžiku τ
od počátku jeho vzniku τ0 je

1V β =
4
3
πJ3

G (τ − τ0)
3 , (3.78)

kde JG je rychlost pohybu hranice.

2. v průběhu přeměny se tvoří zárodky fáze β konstantní rychlostí JN

(obr. 3.30). Za dobu dτ vznikne JNdτ nových zárodků v jednotko-
vém objemu staré fáze; v objemu (V − V β) staré fáze vznikne počet
zárodků JN (V − V β)dτ . Celkový objem nové fáze, tj. přeměněný ob-
jem, je dán součtem objemů všech zárodků nové fáze, vytvořených
od počátku přeměny. Pro zjednodušení budeme uvažovat, že τ0 = 0,
takže celkový objem fáze β, vytvořený za dobu τ je

V β =
4
3
πJ3

G

τ∫
0

JNτ3
(
V − V β

)
dτ. (3.79)

3. objem fáze V β by se podle rovnice (3.79) zvětšoval do nekonečna,
což je nereálné, nebot’ objem soustavy je konečný. Kromě toho je růst
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Obrázek 3.30: Stacionární rychlost nukleace

zrn nové fáze omezen vzájemným stykem sousedních zrn. Ve snaze
respektovat tyto okolnosti byl zaveden tzv. korigovaný objem nové
fáze, který je definován vztahem

V β
k =

4
3
πJ3

GV

τ∫
0

JNτ3dτ. (3.80)

Korigovaný objem odpovídá situaci, kdy by zárodky vznikaly v ce-
lém původním objemu V soustavy, který by se neměnil. Ze vztahů (3.79)
a (3.80) vyplývá, že poměr přírůstku reálného objemu dV β k pří-
růstku korigovaného objemu dV β

k za dobu dτ je dána rovnicí

dV β

dV β
k

=
V − V β

V
. (3.81)

Vztah (3.81) je nutno dále upravit. S využitím substituce V − V β = x,
odkud −dV β = dx a vztahů∫

dx

x
= ln x

V β

V
= ξ,

dostaneme postupně

dV β
k = V

dV β

V − V β
;∫

dV β
k = V

∫
dV β

k

V − V β
;

V β
k = −V ln

(
V − V β

)
+ C.

Konstantu C určíme z podmínky, že na začátku přeměny, tj při τ = 0,
je V β = 0, V β

k = 0. Odtud C = V lnV ; potom je

V β
k = −V ln(V − V β)− (−V lnV ) = −V ln

V − V β

V
= −V ln(1− ξ);
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Obrázek 3.31: Schématicky znázorněná kinetická křivka heterogenní přeměny probíhající
do vzniku 100 % nové fáze

exp

(
−V β

k

V

)
= 1− ξ. (3.82)

Po nahrazení V β
k (3.82) pomocí (3.80) je nakonec relativní objem ξ =

V β

V nové fáze β (tedy objem nové fáze, která by se vytvořila v jednot-
kovém objemu staré fáze)

ξ = 1− exp

−4
3
πJ3

G

τ∫
0

JNτ3dτ

 , (3.83)

což je konečná kinetická rovnice heterogenních fázových přeměn, gra-
ficky znázorněná na obr. 3.31.

Celková rychlost přeměny je potom

ξ̇ =
4
3
πJ3

G

τ∫
0

JNτ3dτ exp

4
3
πJ3

G

τ∫
0

JNτ3dτ

 . (3.84)

K poklesu rychlosti při dlouhých časech dochází vlivem vzájemného se-
tkání rostoucích částic. Dolní konec křivky se dotvoří jedním nebo druhým
naznačeným způsobem extrapolace. Relativní objem nové fáze ξ a rychlost
přeměny ξ̇ se může měnit podle toho, jak se chová JN :

1. Za předpokladu, že JN je během přeměny konstantní je poměrný ob-
jemový podíl ξ fáze β za dobu τ od počátku přeměny (kdy τ = 0)

ξ = 1− exp
(
−4

3
πJ3

GJNτ4

)
(3.85)

a rychlost této přeměny je

ξ̇ =
16
3

πJ3
GJNτ3 exp

(
−4

3
πJ3

GJNτ4

)
. (3.86)
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celková rychlost přeměny ξ̇
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b)
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Obrázek 3.32: Závislost celkové rychlosti přeměny na teplotě u přeměn probíhajících s
a) přehřátím, b) přechlazením

2. Mnohem obecnější předpoklad o nukleaci spočívá v tom, že na po-
čátku přeměny při τ = 0 existuje v jednotkovém objemu nβ zárodků
fáze β a časová závislost rychlosti nukleace je charakterizována moc-
ninným vztahem

JN = Cτ q. (3.87)

Za dobu τ je relativní objemový podíl ξ fáze β

ξ = 1− exp
(
−4

3
πJ3

G

(
nβτ3 + Cτ4+q

))
(3.88)

a rychlost přeměny je

ξ̇ =
dξ

dτ
. (3.89)

U rychlosti nukleace JN a rychlosti růstu JG jsme se po odvození pří-
slušných výpočtových vztahů zabývali odhadem závislosti obou rychlostí
na teplotě přeměny u přeměn probíhajících s přehřátím nebo s přechla-
zením (obr. 3.17 a 3.19). Podobný odhad by bylo třeba udělat i u celkové
rychlosti přeměny, což z výsledných vztahů (3.84), příp. (3.86) není snadné
vzhledem k jejich komplikovanosti. Vidíme z nich však, že celková rych-
lost přeměny ξ̇ je závislá na JN a J3

G; lze proto v prvním přiblížení velmi
zhruba napsat, že

celková rychlost přeměny ξ̇ ≈ rychlost nukleace JN × rychlost r̊ustu JG

a usoudit, že průběh ξ̇(T ) bude znázorněn podobnou křivkou jaká byla
odhadnuta pro teplotní závislosti JN (T ) a JG(T ). Průběh ξ̇(T ), znázorněný
na obr. 3.32, byl potvrzen i experimentálně.
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3.4.4.3 Kinetický diagram izotermické přeměny

Kinetické (transformační) diagramy fázových přeměn se zakreslují v sou-
řadnicích teplota-čas (log) a patří mezi nejdůležitější diagramy s teoretic-
kým i praktickým využitím. Jsou zrcadlovým obrazem závislosti celkové
rychlosti přeměny na teplotě. Jsou to ty diagramy, kvůli nimž jsme v obr. 3.17,
3.19 a 3.32 vynášeli teplotu na svislou osu a rychlosti JN , JG a ξ̇ na vodo-
rovnou osu. Základní obecný tvar izotermických kinetických diagramů, v
nichž přeměny probíhají při konstantní teplotě, je znázorněn pro přeměny
s přehřátím na obr. 3.33 a pro přeměny s přechlazením na obr. 3.34. Křivky
začátku přeměny jsou označeny symbolem s (start), křivky konce přeměny
jsou označeny symbolem f (finish). Ke kinetickým diagramům jsou nakres-
leny také kinetické křivky příslušných přeměn.

Obrázek 3.33: Obecný tvar izotermic-
kého kinetického diagramu pro přeměny
s přehřátím včetně kinetických křivek
příslušných přeměn

Obrázek 3.34: Obecný tvar izotermic-
kého kinetického diagramu pro přeměny
s přechlazením včetně kinetických kři-
vek příslušných přeměn

Na obr. 3.33 a 3.34 vidíme, že před zahájením přeměny uplyne určitá
doba, kdy stará fáze zůstává beze změny; tato doba se nazývá inkubační
perioda. Dále na obou obrázcích vidíme, že křivky počátku i konce pře-
měny se asymptoticky přibližují izotermě, odpovídající teplotě Tt rovno-
vážné koexistence obou fází. Při rovnovážné teplotě je totiž kritická veli-
kost zárodku nekonečná a rychlosti nukleace i růstu nulové.

Na obr. 3.33 se inkubační doba i doba trvání přeměny zkracují s ros-
toucí teplotou přeměny. To odpovídá vzrůstu celkové rychlosti přeměny se
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(a) (b)

Obrázek 3.35: Kinetický diagram anizotermické přeměny a) krystalizace, b) přeměny v
tuhém stavu

vzrůstem teploty v důsledku průběhu JN a JG s teplotou při těchto přemě-
nách, kdy termodynamické i difuzní faktory působí příznivě ve shodném
směru.

Z obr. 3.34 vidíme, že s rostoucím přechlazením se inkubační perioda
zkracuje až do minima, které zpravidla odpovídá maximální celkové rych-
losti přeměny, maximálním hodnotám JN a JG. V této teplotní oblasti je
fázová přeměna podporována rychlostí difuze a brzděna termodynamic-
kým faktorem. Při dalším poklesu teploty se inkubační doba prodlužuje,
přeměna je podporována termodynamicky a brzděna klesající difuzí.

3.4.4.4 Kinetický diagram anizotermické přeměny

V technické praxi se fázové přeměny uskutečňují častěji při poklesu nebo
růstu teploty (tj. anizotermicky) než izotermicky. Proto se konstruují a po-
užívají kromě izotermických také anizotermické kinetické (transformační)
diagramy, v nichž se průběh přeměn sleduje při určité rychlosti ochlazo-
vání (obr. 3.35). Anizotermické diagramy mají tvar podobný izotermickým,
mohou však být o něco složitější a pro daný materiál bývají posunuty k del-
ším časům a k nižším teplotám.

3.4.4.5 Analýza experimentálních dat, Avramiho rovnice

Je-li přítomnost zárodku na počátku přeměny zanedbatelná a rychlost nuk-
leace se v průběhu přeměny zmenšuje, je možno objemový podíl fáze β vy-
tvořený za dobu τ vyjádřit rovnicí podle (3.85), nebo (3.88) vztahem (3.90),
kde 3 ≤ κ ≤ 4.

ξ = 1− exp (−κτn) . (3.90)
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Obrázek 3.36: Grafické znázornění Avramiho rovnice – vztah (3.90)

Rovnice (3.90) se nazývá Avramiho rovnice a používá se často k analýze
kinetiky fázových přeměn. Při κ = 1 je Avramiho rovnice shodná s rov-
nicí 3.76. Vliv hodnoty k na izotermický průběh přeměny lze posoudit z
obr. 3.36. Přeměna se v průběhu času zpomaluje tím intenzivněji, čím větší
je hodnota κ, nebot’ pro rychlost izotermické přeměny platí

ξ̇ = nτ (n−1)κ exp (−κτn) . (3.91)

Určíme-li pokusně izotermické průběhy fázové přeměny při vhodně
zvolených teplotách, tj. určíme-li dvojice hodnot (ξ, τ ), můžeme jednak sta-
novit hodnoty κ a n, jednak sestrojit kinetický diagram izotermické pře-
měny, který v sobě obecně zahrnuje jak nukleaci, tak růst zárodků. Rozbo-
rem získaných údajů můžeme určit aktivační energie sledovaných dějů a
na podkladě jejich hodnot posuzovat reálné mechanismy, jimiž se tyto děje
realizují.



Kapitola 4
Fázové přeměny

V této kapitole budeme věnovat pozornost jednotlivým fázovým přemě-
nám, a to z obecného hlediska, ne výhradně ve vztahu k určitým sousta-
vám. Rozdělíme je do dvou velkých skupin, na krystalizaci a na přeměny
v tuhém stavu. U každé fázové přeměny budeme brát v úvahu její termo-
dynamiku, kinetiku, vliv difuze, mechanismus (který uvádí vztahy mezi
strukturou nové a staré fáze), případně i její charakteristické zvláštnosti.
Přitom budeme využívat poznatky získané ve všech dřívějších obecných
teoretických kapitolách.

Jednotlivými fázovými přeměnami se budeme zabývat v různém roz-
sahu, nebot’ jednotlivé aspekty některých přeměn jsme podrobně vysvětlili
již dříve v kap. 3.2 a některé fázové přeměny budou uvedeny znovu poz-
ději ve vztahu k soustavě železo-uhlík.

Příklady uvedené v kapitole 9 ukazují, že teoretické úvahy a znalosti
mají praktické uplatnění ve významných technických procesech.

4.1 Krystalizace

Krystalizace znamená přechod z kapalného do tuhého krystalického stavu
soustavy. V jejím průběhu se uvolňuje značné množství reakčního tepla
(skupenského tepla krystalizace), které musí být odváděno od mezifázo-
vého rozhraní krystal-tavenina. Proto říkáme, že krystalizace je fázová pře-
měna řízená odvodem tepla. Rozeznáváme krystalizaci jednosložkových
soustav a krystalizaci soustav vícesložkových (my obvykle uvažujeme pouze
soustavy binární), kterou rozdělujeme na krystalizaci tuhých roztoků a krys-
talizaci eutektika (obr. 4.1) Běžně se hovoří také o peritektické krystalizaci,
což však není zcela přesné, nebot’ v soustavách s peritektickou přeměnou
dochází ke krystalizaci tuhého roztoku, jenž při peritektické teplotě reaguje
s okolní taveninou, která je s ním v rovnováze a vzniká nová tuhá fáze; pe-
ritektická přeměna se proto podobá spíše chemické reakci než krystalizaci.

57
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(a) (b) (c)

(d) (e) (f)

Obrázek 4.1: Krystalizace a) jednosložkové soustavy – čistého kovu a intermediární fáze,
b) tuhého roztoku v binární soustavě, c) eutektika v binární soustavě

Tavení a tuhnutí jsou podkladem pro různé technologické aplikace –
lití ingotů, lití odlitků, růst monokrystalů polovodičů, růst usměrněných
eutektik jako kompozitních materiálů, tavné svařování. Znalosti těchto fá-
zových přeměn umožní řídit vlastnosti odlitků a svarů.

4.1.1 Krystalizace jednosložkové soustavy

Jednotlivými aspekty této krystalizace jsme se zabývali již v kapitolách
5.4.3.4, 5.4.4, 5.8.4.3, 5.9.6.2.1, 5.9.6.2.2, 8, 9.3.2, 9.3.3 1 a v příkladech P5.12,
P9.1, P9.2, P9.3. Nyní si vysvětlíme pojem rekalescence a budeme věnovat
pozornost také růstu krystalu čistého kovu v tavenině i struktuře ztuhlého
kovu. S krystalizací skutečně čistých kovů se v praxi setkáváme zřídka, ne-
bot’ i kovy komerčně čisté obsahují dostatečné množství nečistot na to, aby
se chovaly jako slitiny.

4.1.1.1 Rekalescence

Rekalescence značí vzrůst teploty soustavy v průběhu krystalizace, způ-
sobený značným přechlazením na začátku krystalizace a v jeho důsledku
prudkým uvolněním skupenského tepla tuhnutí, které se dostatečně rychle

1Viz knihu L. Ptáček a kol.: Nauka o materiálu I., Brno 2001.
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Obrázek 4.2: Křivky chladnutí čisté látky A, a) teoretická křivka tuhnutí, b) křivka tuhnutí
přechlazené taveniny

neodvede (obr. 4.2). Teplota soustavy může vzrůst až nad teoretickou tep-
lotu tavení/tuhnutí Tm.

4.1.1.2 Růst krystalu čistého kovu do taveniny

Růst trojrozměrného zárodku čistého kovu se děje difuzí atomů z taveniny
k jeho povrchu. Přitom je důležité, aby atom byl dostatečně pevně vázán
k povrchu a udržel se na něm. Při růstu krystalů se tedy uplatňují dva po-
chody. Jednak se atomy z kapalného kovu připojují na vytvořený povrch
zárodku, jednak atomy z povrchu krystalu přecházejí do kapalného kovu.
Rychlost růstu krystalu záleží na rozdílu rychlostí obou pochodů. Mezifá-
zové rozhraní se posunuje bud’ směrem do kapalné fáze – krystal roste,
nebo se rozhraní posunuje na úkor krystalu – krystal se rozpouští. Tento
pochod odpovídá oboustranné difuzi a řídí se Arrheniovým vztahem

y′(L→S) = y′0(L→S) exp
(
−

Q(L→S)

RT

)
(4.1)

y′(S→L) = y′0(S→L) exp
(
−

Q(S→L)

RT

)
, (4.2)

kde y′(L→S) a y′(S→L) jsou celkové rychlosti krystalizace a tavení, y′0(S→L)

a y′0(L→S) jsou konstanty, které mohou být vyjádřeny bud’ počtem atomů za
sekundu, které přejdou rozhraním, nebo rychlostí pohybu rozhraní, Q(L→S)

a Q(S→L) jsou aktivační energie potřebné k převedení atomu z kapalného
kovu přes energetickou bariéru mezifázového rozhraní na vznikající krys-
tal, popř. energii potřebnou k převedení atomu z tuhé fáze do kapalné.

Konstanty y′(L→S) a y′(S→L) závisí na řadě faktorů. Značný vliv má tzv.
akomodační činitel, tj. pravděpodobnost, že atom tuhé nebo kapalné fáze
najde na druhé straně rozhraní vhodné místo, kde by se mohl připojit. Pro
přechod atomů z tuhé fáze do kapalné je akomodační činitel více či méně
nezávislý na chemické povaze taveniny, protože všechny kapalné kovy
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(a) fcc {100} (b) fcc {111}

Obrázek 4.3: Schéma umístění atomu na rostoucí krystal na rovinách {111} a {100}

mají přibližně stejnou strukturu. Krystaly však představují specifické typy
povrchů, takže hodnota akomodačního činitele se značně liší podle povahy
tuhé fáze. Závisí na krystalografické rovině, která se stýká s kapalným po-
vrchem. Čím je rovina méně obsazena, tím snáze se může atom připojit k
povrchu. Takovými rovinami jsou u soustavy f.c.c. roviny {100}, zatímco
roviny {111} jsou hustě obsazeny, a proto připojení dalšího atomu je obtíž-
nější (obr. 4.3). Důsledkem toho je při daném stupni podchlazení rozdílná
rychlost růstu pro každou z těchto rovin. Roviny {100} rostou nejrychleji.
Důležitá je i přítomnost mřížkových poruch, zejména šroubových dislo-
kací.

4.1.1.3 Tepelný tok a stabilita mezifázového rozhraní

V čistých kovech je krystalizace řízena odvodem skupenského tepla od
krystalizační fronty. Teplo je odváděno vedením, a to bud’ přes tuhou fázi
nebo přes taveninu, podle toho, je-li gradient teplot před frontou kladný
dTL/dx > 0 (obr. 4.4-i) nebo záporný dTL/dx < 0 (obr. 4.4-j).

Uvažujme případ tuhé fáze, která roste s rovinným mezifázovým roz-
hraním S-L do přehřáté taveniny (dTL/dx > 0). Tepelný tok směřující od
rozhraní do tuhé fáze musí být v rovnováze s tokem z taveniny a skupen-
ským teplem uvolňovaným na rozhraní. To znamená, že

KS
dTS

dx
= KL

dTL

dx
+ JG∆Hm, (4.3)

kde K je tepelná vodivost, dT/dx je teplotní gradient, S a L označují tuhou
fázi a taveninu, JG je rychlost pohybu krystalizační fronty, tj. rychlost růstu
tuhé fáze, ∆Hm je skupenské teplo tuhnutí vztažené na jednotku objemu.

Vztah (4.3) je platný pro pohyb rovinného mezifázového rozhraní i v
případě, kdy teplo je při dTL/dx < 0 odváděno do taveniny.

Růst tuhé fáze do přehřáté taveniny (obr. 4.4-i) znamená zachování sta-
bility rovinného rozhraní. Předpokládejme, že při místním zvýšení JG vznikne
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(i) fcc {100} (j) fcc {111}

Obrázek 4.4: Růst krystalu čisté látky při pozitivním (I) a negativním (II) teplotním gradi-
entu v tavenině, a) rozložení teplot při krystalizaci, b) izotermy při rovinném rozhraní S-L,
c) izotermy po vzniku výstupku tuhé fáze

výstupek tuhé fáze s tak velkým poloměrem zakřivení, že může být zane-
dbán Gibbsův-Thomsonův jev. Krystalizační fronta představuje izotermu o
teplotě Tm; teplotní gradient v tavenině před výstupkem se zvětší, v tuhé
fázi za výstupkem se zmenší. V důsledku toho bude přiváděno více tepla
z taveniny do výstupku, než z něj bude odváděno do tuhé fáze, rychlost
růstu výstupku se zmenší pod rychlost růstu rovinného rozhraní a výčně-
lek zanikne.

Jiná situace nastane, roste-li tuhá fáze do přechlazené taveniny (obr.
4.4-j). Jestli se vytvoří v případě (II) výstupek tuhé fáze, vzroste absolutní
hodnota negativního teplotního gradientu v tavenině. V důsledku toho se
více tepla odvádí od špičky výčnělku než z lineární krystalizační fronty
a výčnělek roste přednostně. Mezifázové rozhraní S-L se v tomto případě
vyznačuje přirozenou nestabilitou.

K odvodu tepla od krystalizační fronty přes tuhou fázi podle obr. 4.4-i
dochází, když krystalizace začíná na stěně formy, která má nižší teplotu
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Obrázek 4.5: Schéma usměrněné krystalizace válcového vzorku

než tavenina. Druhý případ (obr. 4.4-j), tj. odvod tepla do přechlazené ta-
veniny, nastává pouze na začátku heterogenní nukleace zárodků tuhé fáze
v celém objemu taveniny. Pro zahájení nukleace musí být tavenina podchla-
zena pod teplotu Tm a skupenské teplo tuhnutí, uvolňované z prvních krys-
talků, se do ní odvádí. K tomu dochází . Původně zaoblené zárodky tuhé
fáze se začnou větvit v mnoha směrech, postupně se tvoří primární, sekun-
dární i terciární osy dendritů. Dendrity v čistých kovech se nazývají tepelné
dendrity na rozdíl od dendritů ve slitinách, na jejichž vzniku se podílí nejen
teplotní, ale i koncentrační gradient, jak uvidíme později.

4.1.2 Krystalizace tuhých roztoků

Termodynamickými a kinetickými otázkami krystalizace tuhých roztoků
jsme se již zabývali kapitolách 5.8 a 5.9 2. Nyní půjde především o vysvět-
lení důsledků nerovnovážné krystalizace tuhých roztoků, které jsou pod-
míněny posuvem křivky solidu v rovnovážném diagramu (obr. 5.9 3) a shr-
nují se pod pojem odmíšení neboli segregace přísadových prvků. Odmíšení
v mikroobjemech i v makroobjemech slitin přímo ovlivňuje jejich strukturu,
strukturní anomálie, vady a užitné vlastnosti slitin i jejich degradaci. Che-
mická nehomogenita se obtížně odstraňuje a alespoň do jisté míry se pře-
náší i do tvářených a tepelně zpracovaných materiálů. Děje probíhající na
mezifázovém rozhraní krystal tuhého roztoku-tavenina jsou velmi složité.
Sledovaly se proto nejdříve v případech usměrněného tuhnutí kdy odvá-
dění tepla a růst krystalů jsou jednosměrné a pro rovinné mezifázové roz-
hraní, obr. 4.5. Poznatky byly později aplikovány na krystalizaci dendritů
při běžném tuhnutí odlitků (obr. 4.6).

4.1.2.1 Rozdělení přísady mezi taveninu a tuhou fázi při rovinném me-
zifázovém rozhraní a při rychlosti jednosměrné krystalizace JG = 0;
rovnovážný rozdělovací koeficient

Rovnovážná krystalizace probíhá rychlostí blížící se k nule v souladu s rov-
novážnými diagramy. Rovnovážné koncentrace přísady v tavenině a v tuhé

2Viz knihu L. Ptáček a kol.: Nauka o materiálu I., Brno 2001.
3Viz knihu L. Ptáček a kol.: Nauka o materiálu I., Brno 2001.
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(a) (b)

Obrázek 4.6: a) Schématické znázornění dendritu; b) dendritická struktura odlitku

Obrázek 4.7: Část binárního rovnovážného diagramu a) k0 < 1, b) k0 > 1

fázi se běžně určují z příslušného rovnovážného diagramu a jsou dány prů-
sečíky uvažované izotermy s čarami likvidu a solidu.

Na obr. 4.7 je znázorněna část binárního rovnovážného diagramu, v
němž přísada Y bud’ snižuje (a) nebo zvyšuje (b) teploty likvidu a solidu.
Rovnovážný rozdělovací koeficient k0 přísadového prvku Y je obecně de-
finován izotermickým poměrem

k0 =
cS

cL
, (4.4)

kde je cS je rovnovážná koncentrace přísady Y v tuhé fázi, cL je rovnovážná
koncentrace přísady Y v tavenině.

V soustavách, kde přísada snižuje teplotu likvidu a solidu, je k0 < 1.
Jestliže naopak přísada teplotu likvidu a solidu zvyšuje, je k0 > 1.

V tab. 4.1 jsou uvedeny hodnoty rovnovážných rozdělovacích koefici-
entů některých prvků Y ve slitinách Fe-Y rovnovážné rozdělení přísady Y
mezi taveninu a tuhou fázi, dané koeficientem k0, je znázorněno na obr. 4.8a,b
pro teplotu TL ve slitinách, chovajících se podle obr. 4.7a,b.

Vyneseme-li hodnoty rovnovážných rozdělovacích koeficientů k0 pro
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Y O S P C H N Zr Ti Al Mo Si Mn Cr
k0 0,02 0,04 0,15 0,25 0,27 0,38 0,50 0,60 0,60 0,70 0,84 0,85 0,97

Tabulka 4.1: Rovnovážné rozdělovací koeficienty některých prvků Y ve slitinách Fe-Y

x=0 x=xi

a)
vzdálenost

složeńı

CS

CL

x=0 x=xi

b)
vzdálenost

složeńı

CL

CS

Obrázek 4.8: Rovnovážné rozdělení přísady mezi taveninu a tuhý roztok: a) k0 < 1,
b) k0 > 1

prvky Y v binárních slitinách se železem v závislosti na atomovém čísle
zjistíme, že se mění periodicky (obr. 4.9).

Vztah mezi koncentrací přísady v tuhé fázi cS, koeficientem k0 a množ-
stvím ztuhlé fáze g je dán Pfannovou rovnicí

cS = k0c0 (1− g)(k0−1) , (4.5)

kde c0 je původní koncentrace příměsi v tavenině (tj. koncentraci příměsi
ve slitině), cL je koncentrace příměsi v tavenině, cS je koncentrace příměsi
v krystalu, k0 = cS/cL je rovnovážný rozdělovací koeficient, g je poměrné
okamžité množství ztuhlého kovu, vztažené k celkovému množství tave-
niny, které bylo na počátku tuhnutí.

Vztah (4.5) byl odvozen za předpokladů, že jde o usměrněné tuhnutí,
difuze v tuhé fázi se zanedbává (což se odůvodňuje tím, že koeficient di-
fuze D je v tuhé fázi o 2 až 3 řády menší než v tavenině), rozložení přísady
v tavenině je zcela rovnoměrné. S rostoucí hodnotou g se cS zvyšuje při
k0 < 1, naopak cS klesá při k0 > 1 (obr. 4.10).

4.1.2.2 Rozdělení přísady mezi taveninu a tuhou fázi při rovinném me-
zifázovém rozhraní a při rychlosti jednosměrné krystalizace JG >
0 ; efektivní rozdělovací koeficient

V reálných podmínkách probíhá krystalizace rychlostí vyšší než nulovou.
Za těchto okolností se nedosáhne rovnovážného rozdělení přísady mezi ta-
veninu a tuhou fázi podle koeficientu k0. V případě, kdy cS < cL a k0 < 1,
má první zkrystalizovaná část koncentraci příměsi cS = k0c0 a tedy koncen-
trace příměsi v tavenině je cL > c0. Proto dochází k vytěsňování přísady z
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Obrázek 4.9: Závislost koeficientů k0 na atomovém čísle daného prvku

Obrázek 4.10: Znázornění Pfannovy rovnice pro c0 = 1 a pro různé hodnoty k0
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x=0 x=xi

a)
vzdálenost x

složeńı

CS

CL

Ci
L

x=x4 x=0 x=xi

b)
vzdálenost x

složeńı

Ci
L

CL

CS

x=x4

δ

Obrázek 4.11: Nerovnovážné rozdělení přísady mezi taveninu a tuhý roztok: a) k0 < 1,
b) k0 > 1

rostoucího krystalu do okolní taveniny, odkud se přenáší do vzdálenějších
míst taveniny převážně difuzí. Tento pochod je časově náročný, a proto se
v tavenině před mezifázovým rozhraním vytvoří vrstva se zvýšenou kon-
centrací přísady (obr. 4.11a). V soustavách, kde cS > cL a tedy k0 > 1 se
přísadou obohacuje naopak tuhá fáze a koncentrační poměry odpovídají
obr.(4.11b). Vrstva o hloubce δ před krystalizační frontou, v níž je koncen-
trace přísady zvýšena popř. snížena ve srovnání s hodnotou cL, se nazývá
difuzní vrstva. Rozložení příměsi je v tomto případě vyjádřeno efektivním
rozdělovacím koeficientem ke.

Pomocí difuzní teorie mikrosegregace lze vypočítat rozložení příměsi
znázorněné kvalitativně na obr. 4.11, a to pro její přenos pouhou difuzí,
dále pak kombinací difuze a přirozeného proudění, nakonec pak vlivem
nuceného proudění (míchání) bez účasti difuze. Vliv difuze se popisuje
pomocí 1. Fickova zákona a 2. Fickova zákona doplněného o člen, který
vyjadřuje skutečnost, že samo mezifázové rozhraní jako zdroj difundující
látky se pohybuje ve směru difuze přísady. Výstupem všech tří modelů pro
schéma na obr. 4.11a jsou výpočtové vztahy umožňující určit koncentraci
přísady v tuhé fázi cS a v tavenině cL, které uvádíme bez odvození a jejichž
grafickým znázorněním jsou závislosti uvedené na obr. 4.12.

Výpočtové vztahy k obr. 4.12:

1. cL = c∞L + ci
L (1− k0) exp

[
−JG

DL
(x− xi)

]
,

ci
S = c∞S = c0;

2. cL = c∞L + ci
L (1− k0)

{
exp

[
−JG

DL
(x− xi)

]
− exp

[
−JG

DL
δ
]}

,

cS = kec0 (1− g)(ke−1) ;

3. cL = c0 (1− g)(k0−1) ,

cS = k0c0 (1− g)(k0−1) .

V praxi je nejčastější přenos přísady od mezifázového rozhraní do tave-
niny pomocí difuze a přirozeného proudění. Je ovšem třeba zdůraznit, že
vytvoření koncentrační rovnováhy na mezifázovém rozhraní trvá určitou
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(a) (b)

(c)

Obrázek 4.12: Rozdělení příměsi v tavenině a v tuhém roztoku, a) vyrovnání v tavenině
pouhou difuzí, b) vyrovnání v tavenině difuzí a přirozeným prouděním, c) vyrovnání v
tavenině nuceným prouděním

dobu od zahájení krystalizace, jak vyplývá z obr. 4.13. Stacionárního stavu
je dosaženo v okamžiku, kdy koncentrace příměsi v tuhé fázi cS dosáhne
hodnoty c0. Hodnota cS zůstává nadále již stejná a nemění se ani rozložení
přísady v difuzní vrstvě a v celé tavenině.

Pomocí vztahů platných pro případ z obr. 4.12b byl definován efektivní
rozdělovací koeficient ke daný vztahem

ke =
ci
S

c∞L
. (4.6)

Dále byl odvozen vztah mezi efektivním a rovnovážným rozdělovacím ko-

Obrázek 4.13: Rozdělení příměsi v tavenině a v krystalu od počátku krystalizace do do-
sažení rovnovážného stavu
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eficientem ve tvaru

ke =
k0

k0 + (1− k0) exp
(
−JG

D δ
) . (4.7)

Ze vztahu (4.7) vyplývá, že ke = k0, jestliže proudění zcela odstraní difuzní
vrstvu (tj. δ = 0) nebo jestliže je krystalizační rychlost JG → 0. Naopak
ke = 1 pro JG →∞, kdy vznikající tuhá fáze má stejné složení jako tavenina
v nekonečnu.

4.1.2.3 Konstituční přechlazení a morfologie mezifázového rozhraní krystal-
tavenina

Až dosud jsme uvažovali modelový případ rovinné krystalizační fronty,
která se pohybuje do taveniny se záporným gradientem koncentrace. Víme
přitom, že přenos látky od krystalizační fronty do taveniny je analogický
přenosu skupenského tepla tuhnutí do taveniny při krystalizaci čistých
kovů, kde se při záporném teplotním gradientu před krystalizační fron-
tou tvoří tepelné dendrity. Na první pohled by se tedy zdálo,že v případě
slitin by se mohlo rovinné mezifázové rozhraní rozčlenit již vlivem kon-
centračního profilu přísady v tavenině. Ve skutečnosti je situace složitější,
nebot’ k porušení rovinnosti krystalizační fronty u slitin musí spolupůsobit
jak rozložení přísady, tak rozložení teplot v tavenině. Této problematice se
nyní budeme věnovat.

Půjde o vysvětlení jevu, který se nazývá konstituční (koncentrační) pře-
chlazení, nebot’ vzniká v důsledku gradientu koncentrace v tavenině před
krystalizační frontou. Dále se budeme zabývat vlivem konstitučního pře-
chlazení na tvar mezifázového rozhraní. Od rovinné krystalizační fronty,
kterou jsme uvažovali až dosud, přejdeme nyní ke vzniku krystalizační
fronty s členitým nerovinným profilem.

Opět budeme uvažovat binární slitinu s k0 < 1 a připomeneme si obr. 4.7a
a 4.12a. Z jejich vzájemné souvislosti vyplývá, že difuzní vrstvě taveniny
před krystalizační frontou, kde je zvýšená koncentrace přísady, přísluší v
souladu s rovnovážným diagramem a podle místní hodnoty cL rovnovážná
teplota likvidu snižující se od vzdálených míst v tavenině směrem ke krys-
talizační frontě. Výpočtem teploty likvidu se nyní budeme zabývat, a to pro
případ, kdy přenos látky od rozhraní do taveniny se uskutečňuje pouhou
difuzí.

Je- li teplota tavení čistého kovu Tm, pak je (za předpokladu lineárního
likvidu se směrnicí m) teplota likvidu T1 příslušná koncentraci přísady cL

v tavenině, dána vztahem

T1 = Tm + mcL. (4.8)

U soustav s k0 < 1 je m < 0. Rozložení příměsi v tavenině a v tuhé fázi
je v případě difuzního přenosu dáno rovnicí z obr. 4.12a, kterou můžeme
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napsat ve tvaru

cL = c∞L + c∞L

(
1− k0

k0

)
exp

(
−JG

DL
x′
)

, (4.9)

kde x′ = x− xi.
Spojením rovnic (4.8) a (4.9) obdržíme vztah

T1 = Tm + mc∞L

[
1 +

(
1− k0

k0

)
exp

(
−JG

DL
x′
)]

, (4.10)

podle nějž pro rovnovážnou teplotu likvidu v místě rozhraní (x′ = 0) platí

T i
1 = Tm + mc∞L

[
1 +

(
1− k0

k0

)]
. (4.11)

Dosazením (4.11) do (4.10) obdržíme hledanou funkci

T1 = T i
1 + mc∞L

(
1− k0

k0

)[
exp

(
−JG

DL
x′
)
− 1
]

. (4.12)

Výraz mc∞L

(
1−k0

k0

)
z rovnice (4.12) představuje teplotní vzdálenost mezi

likvidem a solidem pro koncentraci c∞L = ci
S = c0.

Nyní vypočítejme směrnici tečny dT1
dx ke křivce likvidu T1 v místě roz-

hraní, kde x′ = 0. S použitím vztahu (4.12) je

Gi
1 =

dT1

dx
= −mc∞L

(
1− k0

k0

)
JG

DL
. (4.13)

Vztah (4.13) vyjadřuje směrnici tečny ke křivce T1(x) v místě x = xi (tj.
x′ = 0). Grafickým znázorněním vztahů (4.12) a (4.13) je obr. 4.14.

Nyní, když známe průběh metastabilního likvidu v difuzní zóně, nás
bude zajímat, zda je tavenina v této vrstvě přechlazena nebo ne. Víme, že
tavenina bude přechlazena v těch místech difuzní vrstvy, kde její skutečná
teplota bude nižší než je příslušná rovnovážná teplota likvidu T1. Rozlo-
žení skutečné teploty v tavenině před rozhraním je dáno vztahem

T = Ti + GLx
′ = Tm +

c0

k0
+ GLx

′, (4.14)

kde GL = dTL/dx je teplotní gradient v tavenině těsně před rozhraním S-L
(obr. 4.15).

Je-li v některém místě taveniny před krystalizační frontou skutečná tep-
lota T menší než rovnovážná teplota T1, tj. T1−T > 0, je v tomto místě tave-
nina přechlazená. Podmínkou pro vznik tohoto přechlazení je, aby

∣∣dT1
dx

∣∣
x=xi

>
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Obrázek 4.14: Rozložení přísady (křivka cL) a průběh rovnovážné teploty likvidu
(křivka T1) po vyrovnání koncentrace příměsi v tavenině pouhou difuzí

Obrázek 4.15: Podmínka pro vznik konstitučního přechlazení

GL. Hloubku přechlazení xk určíme z podmínky T1 = T . Při zanedbání pře-
chlazení ∆Ti, které je potřebné k růstu krystalu a s uvážením vztahů (4.12)
a (4.14) to znamená, že

GL

JG
<

[
−m

(
1− k0

DLk0

)
c∞L

]
. (4.15)

Vidíme, že vznik koncentračního přechlazení podporují ty faktory, které
zmenšují levou a zvětšují pravou stranu vztahu (4.15).

S velikostí konstitučního přechlazení souvisí morfologie mezifázového
rozhraní krystal-tavenina. Až dosud jsme uvažovali, že mezifázová hranice
krystal-tavenina je rovinná. V průběhu růstu tuhé fáze však může dojít ke
změně tvaru rozhraní.

Mohou vzniknout čtyři základní tvary rozhraní: rovinné, stupňovité,
buněčné, rozvětvené (obr. 4.16). Vliv konstitučního přechlazení na morfo-
logii rozhraní znázorňuje schematicky obr. 4.17. Rovinné mezifázové roz-
hraní může vzniknout jen při velkém teplotní gradientu v tavenině, při
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rovinný

buněčný

rozvětvený

Obrázek 4.16: Základní druhy morfologie mezifázového rozhraní

menší rychlosti růstu, při vysoké čistotě kovu a při izotropní atomární ki-
netice růstu.

Stupňovité rozhraní vyžaduje (při srovnatelné rychlosti pohybu krysta-
lizační fronty) ve srovnání s rovinným rozhraním určité malé přechlazení.
Vyskytuje se při anizotropní atomární kinetice růstu, ke které dochází u
kovů s rozdílnou hustotou atomů v různých krystalografických směrech
nebo v přítomnosti cizích atomů s přednostní absorbcí na některých rovi-
nách krystalů. Povrch krystalu je tvořen segmenty s nízkým a vysokým
krystalografickým indexem. Předpokládá se, že růst ve směru vysokých
krystalografických indexů vyžaduje menší přechlazení než růst ve směru
nízkých krystalických indexů.

Buněčné rozhraní vzniká již při malém množství přísad a při určitém
konstitučním přechlazení. Rovinné rozhraní se za těchto podmínek stává
nestabilním, nebot’ růst každého jeho bodu, který se jen poněkud předsune
do taveniny, začne být konstitučním přechlazením podporován.

Rozvětvené (dendritické) rozhraní vzniká při dostatečně vysoké kon-
centraci přísady a při výrazném konstitučním přechlazení. Za těchto pod-
mínek se na krystalizační frontě tvoří výstupky s velmi malým poloměrem
zakřivení čela, což umožňuje jejich rychlé pronikání do taveniny. Na bo-
cích těchto výstupků vzniká rovněž konstituční přechlazení a to je příčinou
tvorby výstupků na bocích krystalu neboli bočního větvení. Rychlost čel-
ního růstu dendritů je však zpravidla několikanásobně vyšší než rychlost
bočního růstu. Poměr obou těchto rychlostí závisí především na přechla-
zení (obr. 4.18).

Při přechlazením větším než kritickém vznikají kulové krystaly. V tech-
nických případech jsou tyto podmínky růstu naprosto výjimečné, snad je
lze předpokládat přímo na styku taveniny se stěnou formy. Se zmenšujícím
se přechlazením klesá poměr rychlosti čelního a bočního růstu.

Při přechlazením větším než kritickém vznikají kulové krystaly. V tech-
nických případech jsou tyto podmínky růstu naprosto výjimečné, snad je
lze předpokládat přímo na styku taveniny se stěnou formy. Se zmenšujícím
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Obrázek 4.17: Vliv konstitučního pře-
chlazení na morfologii mezifázového
rozhraní

Obrázek 4.18: Vliv přechlazení na tvar
dendritu

se přechlazením klesá poměr rychlosti čelního a bočního růstu.

4.1.2.4 Růst buněk a dendritů

V minulé kapitole jsme ukázali, za jakých teplotních a koncentračních pod-
mínek se může porušit rovinnost krystalizační fronty. Nyní se pohybem
členité krystalizační fronty do taveniny budeme zabývat blíže, přejdeme
však již od úvah od jednosměrné krystalizace k běžné krystalizaci odlitků.
Ta probíhá při rychlosti ochlazování vochlaz > 0, což vede k poklesu rovno-
vážné křivky solidu (obr. 4.19), ke zvětšení teplotního intervalu tuhnutí a
ke vzniku segregací. Například podle obr. 4.19a se v tavenině o složení c0

vyznačují první vzniklé krystaly koncentrací N0. Při rovnovážném tuhnutí
(vochlaz → 0) by se obsah přísady ve vznikající tuhé fázi měl řídit rovno-
vážným solidem A-B. Z důvodu neúplného difuzního vyrovnání však slo-
žení vnitřní části krystalů odpovídá křivce A-C. Složení naposled tuhnou-
cích vrstev krystalu je dáno bodem E. V průměru odpovídá složení krys-
talů křivce A-D. Poslední zbytky taveniny uzavřené mezi dendrity mají po
ztuhnutí složení bodu E’.

Na obr. 4.17 jsme viděli, že rovninnost krystalizační fronty se začíná po-
rušovat již při malém přechlazení. Vzniká buněčná struktura, jejíž tvorba
je znázorněna na obr. 4.20. Po vytvoření prvního výstupku je přísadový pr-
vek vytlačován i v bočním směru a hromadí se u paty výstupku (obr. 4.20b).
To vede k místnímu snížení rovnovážné teploty tuhnutí a k místnímu na-
tavení (obr. 4.20c) a k dalšímu vytěsňování přísady, což způsobuje vznik
nových výstupků (obr. 4.20d). Ty se za určitých podmínek mohou vyvi-
nout v dlouhé osy buněk rostoucí rovnoběžně se směrem tepelného toku
(obr. 4.20e).

Špičky buněk zasahují do taveniny o vysoké teplotě a mají malý obsah
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(a) (b)

Obrázek 4.19: Pokles rovnovážné křivky solidu při nerovnovážném tuhnutí (vochlaz > 0)
v soustavách: a) s úplnou rozpustností, b) s eutektickou přeměnou.

(a) (b) (c) (d) (e)

Tepelný tok

Obrázek 4.20: Tvorba buněk na původně rovinné krystalizační frontě
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(a) (b)

Obrázek 4.21: Slitina Al-4Cu, a) obohacení stěn buněk mědí, b) buňky na krystalizační
frontě

Struktura krystalu Směry růstu dendritů
kubická plošně středěná fcc < 100 >
kubická prostorově středěná bcc < 100 >
hexagonální těsně uspořádaná hcp < 1010 >
tetragonální prostorově středěná bct < 110 > nebo 13◦ od < 110 >

Tabulka 4.2: Směry růstu dendritů typických krystalových struktur

přísady. Vytěsněná přísada se hromadí na bočních stěnách buňky a sni-
žuje jejich teplotu tuhnutí. Obohacení přísadou může vést na bocích buněk
ke vzniku fází, které by se při rovnovážném rozložení přísady v dané sli-
tině nevytvořily. Příkladem je možný vznik eutektika ve slitině, jejíž rov-
novážná krystalizace by vedla pouze ke tvorbě krystalů tuhého roztoku
(obr. 4.19b a 4.21).

Buněčné struktury jsou stabilní jen v určitém rozsahu teplotních gra-
dientů v tavenině. Při dostatečně velkém přechlazení, tj. při malých teplot-
ních gradientech, se buňky nebo primární osy krystalu začínají rozvětvovat
do sekundárních os. Při ještě menších teplotních gradientech se vyvíjí i sys-
tém terciárních os a vzniká dendritická struktura. Tato změna v morfologii
je doprovázena změnou směru primárních os: odklánějí se od směru od-
vodu tepla do krystalograficky výhodného směru (tab. 4.2). Sklon k tvorbě
dendritů obecně vzrůstá s rostoucím teplotním intervalem tuhnutí.

Důvod přeměny buněk v dendrity není zcela jasný. Pravděpodobně
spočívá ve vzniku konstitučního přechlazení v tavenině mezi buňkami, což
vede k nestabilitě jejich rovinných boků, na nichž se vytvoří výstupky o
takové vzdálenosti, aby se konstituční přechlazení taveniny co nejvíce sní-
žilo.
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(a) (b)

Obrázek 4.22: Schéma znázornění dvoufázové vrstvy a objemového elementu

Experimenty ukázaly, že v tuhnoucím odlitku existuje přechodová dvou-
fázová zóna (obr. 4.22), tvořená směsí taveniny a dendritických krystalů.
Studium této zóny má velký význam, protože procesy v ní probíhající ur-
čují licí strukturu, velikost segregace, množství pórů a dalších nehomogenit
a defektů struktury. Pozornost se přitom soustřed’uje hlavně na vliv krys-
talizační rychlosti na vzdálenost dendritických os a na velikost dendritické
segregace, význam difuze v kapalné a tuhé fázi na vznik dendritické se-
gregace, platnost rovnovážných rozdělovacích koeficientů pro podmínky
dendritické segregace, aj.

4.1.2.5 Faktory ovlivňující stupeň dendritické segregace

Povšimneme si vlivu vzdálenosti dendritických os, vlivu difuze v pevné a
kapalné fázi, vlivu rychlosti ochlazování a vlivu rovnovážného rozdělova-
cího koeficientu.

4.1.2.5.1 Vzdálenost dendritických os Rozhodující veličinou pro tvar
dendritu je tzv. místní doba tuhnutí, tj. doba setrvání daného místa v dvou-
fázové oblasti (obr. 4.23). Místní doba tuhnutí τf závisí na šířce intervalu
tuhnutí ∆Tls, na teplotním gradientu v tavenině GL a na lineární rychlosti
tuhnutí JG, tj. na rychlost posuvu krystalizační fronty. Udává se vztah

τf =
∆Tls

GLJG
, (4.16)

kde ∆Tls = Tl − Ts = konst. pro daný materiál, GLJG = ν je rychlost
ochlazování.

Závislost z obr. 4.23 se vyjadřuje funkcí

2L = K(τf )n = K

(
∆Tls

GLJG

)n

= K ′(GLJG)−n′ , (4.17)
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Obrázek 4.23: Závislost vzdálenosti mezi dvěma sousedními osami dendritů na místní
době tuhnutí

kde 2L je vzdálenost sousedních os dendritů, K je materiálový faktor, τf je
místní doba tuhnutí (rov. 4.16), n je materiálový faktor.

Logaritmováním připravíme rovnici (4.17) k lineární regresní analýze,
pomocí níž určíme na základě experimentálních údajů číselnou hodnotu K
a n. Závislost mezi vzdáleností dendritických větví 1. a 2. řádu a veličinami
GL a JG se za ustálených podmínek růstu vyjadřuje také rovnicemi

2L = C3(τf )n2 = C ′
3(GLJG)−n′2 , (4.18)

2L1 = C4(τf )n3 = C ′
4(GLJG)−n′3 , (4.19)

které jsou analogické vztahu (4.17). Podrobnými výpočty se dospělo k zá-
věru, že faktory C3 a C4 jsou obecně závislé na podmínkách odvodu tepla;
n2 a n3 se pokládají za materiálové konstanty.

Vzdálenost dendritických větví je důležitou veličinou, podílející se na
vzniku dendritické segregace.

4.1.2.5.2 Úloha difuze v pevné a kapalné fázi při dendritické segregaci
Mechanismus dendritické segregace popisují dva základní (vzájemně pro-
tichůdné) modely a třetí, který vznikl jejich spojením. V určitém přiblížení
využívají hlavní poznatky, získané při studiu jednosměrné krystalizace.

1. První model předpokládá, že rozhodující pro vznik dendritické se-
gregace je difuze přísad v tavenině. Vychází z představy difuzní vrstvy
obohacené legujícími prvky, která v průběhu tuhnutí vzniká před me-
zifázovým rozhraním a z níž se pomocí difuze (tedy poměrně po-
malu) přenášejí atomy přísad do okolní taveniny. Poměr koncentrace
určitého legujícího prvku v nejchudších osách dendritů k jeho prů-
měrné koncentraci v tavenině určuje efektivní rozdělovací koeficient
ke (4.7). Ten je při dendritické segregaci dán rovnovážným rozdělo-
vacím koeficientem k0 a výrazem JGρ/2DL, kde JG je lineární krys-
talizační rychlost, ρ je poloměr zakřivení na špičkách dendritů, DL je
difuzní součinitel přísady v tavenině.
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2. Druhý model vychází z přesvědčení, že rychlost difuze v tavenině je
dostatečně velká na to, aby v uvažovaném objemovém elementu mezi
osami dendritu neustále stačila vyrovnávat koncentrace přísady. Uva-
žuje se, že rozdělení přísad je významně ovlivněno difuzí v pevné
dendritické fázi, a to během tuhnutí nebo po jeho ukončení. Rozsah
difuzního vyrovnání je přitom určen koeficientem difuze přísady DS

v tuhé fázi, místní dobou tuhnutí τf a polovinou vzdálenosti mezi
větvemi dendritů L. Vztahem těchto veličin je dán koeficient α =
DSτf/L2, používaný při výpočtech velikosti dendritické segregace.
Při α � 1 je rozložení přísady rovnoměrné, při α � 1 se vytvoří
výrazná dendritická segregace.

3. Třetí model rozděluje proces dendritického tuhnutí do tří stadií: zpo-
čátku rostou dendrity izolovaně a difuzní pochody probíhají podle
prvního modelu; v pozdějším stadiu dochází ke splynutí difuzních
polí sousedních dendritů; nakonec se dendrity vzájemně dotknou,
omezují se v bočním růstu a uplatňují se difuzní pochody podle dru-
hého modelu. Při usměrněné dendritické krystalizaci je volný růst
dendritů ukončen dříve než při volném dendritickém tuhnutí za stej-
ných podmínek. Proto je stupeň dendritické segregace při usměrně-
ném růstu dendritů menší než při krystalizaci volných dendritů.

4.1.2.5.3 Vliv rychlosti ochlazování na velikost dendritického odmíšení
Na obr. 4.24 je vidět, že při nekonečně pomalém tuhnutí by k dendritické
segregaci nedocházelo, protože difuze by stačila vyrovnávat chemické slo-
žení. Při extrémně velké rychlosti ochlazování by proběhla bezdifuzní pře-
měna a opět by nedošlo ke vzniku segregací. Při obvyklých rychlostech
ochlazování dendritická segregace probíhá. Její příčinou je změněná po-
loha rovnovážného solidu (obr. 4.19). Vliv rychlosti ochlazování ν = GLJG

na velikost dendritické segregace vyplývá již z definice efektivního koefi-
cientu odmíšení (4.7), kde ke = f(JGδ/DL), což je schématicky znázorněno
na obr. 4.25. Je vidět, že rychlost ochlazování ovlivňuje dendritickou segre-
gaci pouze v intervalu, kde se parametr JGδ/DL mění z řádu 10−1 na řád
101. Vliv rychlosti ochlazování není tedy výrazný.

4.1.2.5.4 Uplatnění rovnovážných rozdělovacích koeficientů při dendri-
tické segregaci Experimentálně zjištěné rozdělení přísad při dendritické
segregaci neodpovídá hodnotám rovnovážných rozdělovacích koeficientů
k0 příslušných prvků. Zdá se, že v daných souvislostech mají hodnoty k0

pouze orientační význam. Jednou z příčin tohoto stavu je zřejmě ovliv-
nění koeficientů k0 přítomností ostatních přísad, jak je vidět například z
obr. 4.26.

Příkladem nejsilnějšího ovlivnění dendritické segregace prvků Y je pů-
sobení síry, fosforu a uhlíku při jejich vyšší koncentraci ve slitinách Fe-S-Y ,
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Obrázek 4.24: Vliv rychlosti tuhnutí JG

na velikost dendritické segregace
Obrázek 4.25: Závislost ke na parame-
tru JGδ/DL pro k0 = 0.7
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Obrázek 4.26: Vliv obsahu uhlíku na index segregace chrómu v soustavě Fe-C-Cr

Fe-P-Y a Fe-C-Y . Tyto tzv. řídicí prvky (S, P, C), jsou-li přítomny v dosta-
tečném množství, způsobují, že grafitotvorné prvky Y (např. Si, Cu, Ni) se-
gregují v opačném směru než udává jejich koeficient (k0)Y v binárních sli-
tinách Fe-Y . V binárních slitinách obohacují tyto prvky taveninu, v ternár-
ních slitinách mohou obohacovat vznikající krystaly tuhého roztoku. Tento
jev se nazývá usměrněné odmíšení přísad.

4.1.2.6 Změny krystalů v průběhu tuhnutí a po jeho ukončení

Krystalizace tuhých roztoků není ukončena vytvořením systému os den-
dritů. Vyplňováním prostorů mezi osami dendritů se vytvářejí zrna a jejich
hranice. Bezprostředně po tom, co se setkají, mají zrna nepravidelný tvar.
Ihned nato se projeví snaha o dosažení co nejmenší povrchové volné ental-
pie soustavy zmenšením celkové plochy povrchů zrn. Na hranicích zrn se
proto vyrovnávají nerovnosti, takže při dostatečné prodlevě v oblasti vy-
sokých teplot se proto mohou vytvořit krystaly s pravidelnými a rovnými
hranicemi. Tatáž snaha o snížení povrchové volné entalpie podporuje při
vysokých teplotách také růst zrn. Je proto možné, že některá zrna tuhého
roztoku rostou na úkor svých sousedů a vytvářejí hranice, které protínají
původní osy dendritů. Po dokončené krystalizaci se při vysokých teplotách
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uplatní snaha soustavy o částečné difuzní vyrovnávání dendritické segre-
gace. K jejímu výraznějšímu odstranění slouží homogenizační žíhání (kap.
6.4.5.3 4 a příklad P6.10).

4.1.3 Krystalizace eutektika

Dvousložková soustava s neomezenou rozpustností složek v kapalném stavu,
se značně omezenou rozpustností v tuhém stavu, přičemž složky si vzá-
jemně snižují teploty likvidu, má rovnovážný diagram s eutektickým bo-
dem (obr. 4.27a). Při krystalizaci eutektika se z taveniny eutektického slo-
žení tvoří současně dvě tuhé fáze,v případě uvedené soustavy dva tuhé
roztoky. Eutektická přeměna se proto popisuje vztahem

LE →
(
αek

F + βek
G

)
. (4.20)

Podobně jako ve dvousložkové soustavě mohou eutektické přeměny pro-
bíhat i ve trojsložkových a vícesložkových soustavách. Eutektické slitiny se
vždy vyznačují nejnižší teplotu tání dané soustavy. Využívají se proto často
pro výrobu odlitků a pájek.

4.1.3.1 Termodynamika eutektické krystalizace a hlavní typy eutektika

Termodynamické podmínky krystalizace eutektika můžeme v prvním při-
blížení posoudit z diagramů volných entalpií koexistujících fází na obr. 4.27b,c,
kde uvažujeme složení a množství fází, ne však jejich tvar. Při eutektické
teplotě je tavenina s volnou entalpií GL v rovnováze s tuhými roztoky α
a β o volných entalpiích Gα a Gβ . Složení koexistujících fází odpovídá do-
tykovým bodům společné tečny s křivkami volných entalpií. Při teplotě
T < TE je volná entalpie taveniny větší než volná entalpie eutektické směsi
tuhých roztoků α a β. Změna volné entalpie soustavy spojená s krystalizací
eutektika (termodynamická hnací síla pro tvorbu eutektika) je

∆GLE→(αek
F +βek

G ) = G(αek
F +βek

G ) −GLE , (4.21)

kde Nα, Nβ , NE jsou molární zlomky složky B v eutektických fázích α, β a
v tavenině eutektického složení.

Vzhledem k tomu, že eutektická přeměna je nonvariantní (stupeň vol-
nosti je roven nule) podobně jako jsou přeměny čistých látek, lze změnu
volné entalpie při malém přechlazení ∆TE pod eutektickou teplotu TE vy-
jádřit (podle rov. 5.112 a 5.113 5) přibližným vztahem

∆GLE→(αek
F +βek

G )=̇
∆HmE

TE
∆T = ∆SmE∆T, (4.22)

4Viz knihu L. Ptáček a kol.: Nauka o materiálu I., Brno 2001.
5Viz knihu L. Ptáček a kol.: Nauka o materiálu I., Brno 2001.
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kde ∆HmE je reakční teplo při eutektické přeměně, ∆SmE je změna entro-
pie soustavy spojená s eutektickou přeměnou.

Hodnotu veličin ∆HmE a ∆SmE je možno vypočítat pro dané složení a
množství fází tvořících eutektikum pomocí Neumannova-Koppova pravi-
dla (viz vztah 5.37 a příklad P5.13 6) na základě hodnot skupenského tepla
tání (∆Hm)i nebo entropie tání (∆Sm)i složek i = A, B uvažované sou-
stavy. Velikost entropie tání složek soustavy rozhoduje o morfologii eutek-
tika.

Složky A, B, jejichž entropie tání je nízká, tuhnou s nefasetovým roz-
hraním krystal-tavenina a v soustavě A-B vzniká eutektikum nefasetové-
nefasetové. Obvykle má morfologii lamelární, v některých případech prým-
kovou nebo tyčinkovou a tvoří morfologickou skupinu normálních eutek-
tik (obr. 4.28). Tato skupina zahrnuje všechna eutektika kov-kov a četná eu-
tektika kov-metaloid. Příkladem je lamelární eutektikum v soustavě Cu-Ag.
Hodnoty (∆Sm)i [ J·mol−1·K−1] jsou (∆Sm)Cu = 9,66, (∆Sm)Ag = 9,70.

Má-li jedna složka soustavy nízkou a druhá vysokou entropii tání, vzniká
eutektikum nefasetové-fasetové, které se zahrnuje do skupiny anomálních
eutektik. Jeho vznik je typický pro soustavy kov-nekov. Příkladem je eu-
tektikum v soustavě Al-Si nebo lupínkové grafitické eutektikum v sou-
stavě Fe-C (obr. 4.29). Hodnoty (∆Sm)i [ J·mol−1·K−1] jsou (∆Sm)Al = 11,55,
(∆Sm)Si = 30,02, (∆Sm)Fe = 8,48; (∆Sm)C = 22,76 . . . tato hodnota je udána
pro (Tm)C = 4 600 [K] a p = 4 802,8 · 106 [Pa]. Termodynamické a kinetické
principy eutektické krystalizace jsou v těchto případech obdobné jako u
čistě kovových eutektik. Rozdíl v dosažené morfologii je dán rozdílným
mechanismem atomárního růstu kovů a nekovů.

V případě vysokých hodnot entropie tání obou složek soustavy vzniká
eutektikum fasetové-fasetové.

4.1.3.2 Krystalizace lamelárního eutektika

Krystalizace lamelárního eutektika, tj. eutektika tvořeného vystřídanými
deskovitými neboli lamelárními útvary eutektických fází, je prozkoumána
lépe než krystalizace ostatních druhů eutektik. Mnohé její rysy však mají
obecnou platnost a proto jí nyní budeme věnovat pozornost.

4.1.3.2.1 Nukleace lamelárního eutektika Pro zahájení heterogenní nuk-
leace na cizích zárodcích, kterých je v technických slitinách vždy dostatečné
množství, stačí poměrně malé přechlazení pod rovnovážnou eutektickou
teplotu. Toto přechlazení se liší podle druhu a složení slitiny.

V teoriích nukleace se předpokládá, že cizí zárodek podpoří vznik jedné
fáze eutektika ve formě desky. Při jejím růstu se sousední tavenina obohatí
o druhou složku, a proto po jedné straně první fáze eutektika nukleuje jeho

6Viz knihu L. Ptáček a kol.: Nauka o materiálu I., Brno 2001.
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(a)

(b)

(c)

Obrázek 4.27: a) Rovnovážný diagram soustavy s eutektickou přeměnou, b) entalpický
diagram pro rovnovážnou eutektickou teplotu, c) entalpický diagram pro skutečnou tep-
lotu eutektické krystalizace
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(a) (b) (c)

Obrázek 4.28: Eutektikum nefasetové-nefasetové, schematické znázornění mikrostruk-
tury: a) lamelární, b) prýmková, c) tyčinková.

(a) (b)

Obrázek 4.29: Nefasetové-fasetové eutektikum v soustavě a) Al-Si, b) Fe-C
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(a) (b)

Obrázek 4.30: Schéma nukleace a počátečního růstu lamelárního eutektika přemost’ová-
ním

druhá fáze. Obě desky potom mohou růst současně. Tento způsob nukleace
a počátečního růstu přísluší pouze prvním dvěma lamelám eutektika. Pro
další lamely obou fází již není nutná nová nezávislá energeticky náročná
nukleace, nebot’ znásobení počtu lamel se dosáhne tvorbou můstků, které
jsou znázorněny na obr. 4.30a. Podle obr. 4.30b předpokládejme, že jako
první se při určitém přechlazení vytvoří heterogenní nukleací částice α. Zá-
rodek α roste velmi rychle a nabude kulový tvar dřív, než podnítí nukle-
aci fáze β. První zárodek β je v určitém krystalografickém vztahu s fází α
a roste podél povrchu částice α a kolmo k němu. Šířka rostoucí fáze β je
omezená vlivem obohacení přilehlé taveniny atomy složky A, což podpo-
ruje růst fáze α po boku částice β. Předpokládá se, že první lamela β na-
růstá po obvodu zárodku α, přitom po obou stranách přemostí lamelu α.
Tím nukleují další dvě lamely β stejné orientace. Tento proces se opakuje,
až je původní kulovitý zárodek α zcela obklopen střídajícími se lamelami
α a β. Tím se vytvoří nodule eutektika, která roste radiálně z centra. Pravi-
delně platí: jestliže je zárodek α schopen podnítit nukleaci β, není naopak
zárodek β schopen podnítit nukleaci α.

Oprávněnost mechanismu přemost’ování při tvorbě lamelárního eutek-
tika potvrzuje i okolnost, že lamely každé z fází uvnitř eutektické kolonie
mají shodnou krystalografickou orientaci. Orientace nové fáze, nukleované
na povrchu již přítomné fáze, je ovlivňována snahou po minimalizaci me-
zifázové energie. To se uskuteční tím, že obě fáze jsou vůči sobě vhodně
krystalograficky orientovány. Na příklad u eutektika Sn-Pb byla zjištěna
orientace (101)Sn ‖ (111)Pb a [010]Sn ‖ [112]Pb.
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Obrázek 4.31: Rozložení koncentrace složky A v tavenině na krystalizační frontě s eutek-
tikem při T < TE

4.1.3.2.2 Čelní růst lamelárního eutektika Difuzní růst ojedinělé lamely
byl vysvětlen v kap. 3.4.3.2.2. Nyní se budeme věnovat mechanismu sdru-
ženého růstu lamel dvou eutektických fází, při němž se v tavenině na krys-
talizační frontě s eutektikem a těsně před ní se vytváří složité koncentrační
a teplotní pole.

Koncentrační pole (obr. 4.31) vzniká v důsledku většinou značně rozdílné
rozpustnosti složek v eutektické tavenině a v obou fázích eutektika.
Fáze α přitahuje atomy složky A a odmítá přijmout atomy složky B.
Naopak fáze β přitahuje atomy B a odmítá přijmout atomy A. Maxi-
mální, popř. minimální koncentrace dané složky je v tavenině před
středem čela lamely. Eutektické složení taveniny je zachováno jen
před mezifázovým rozhraním α-β. To vede k periodickému rozložení
komponent v tavenině těsně před čelem obou fází eutektika, čímž je
vyvolána tangenciální difuze ve směru osy x. Difuzní tok v tavenině
je rovnoběžný s krystalizační frontou a probíhá v obou směrech: od
čela lamely β k čelu lamely α směřuje tok atomů A a v protisměru od
čela α k čelu β se přesunují atomy B. Tyto toky složek jsou charakte-
rizovány difuzní dráhou λ/2 (kde λ je mezilamelární vzdálenost, tj.
tloušt’ka dvojice lamel α + β).

Ve srovnání se složením eutektické taveniny obsahuje lamela α větší
množství složky A a menší množství složky B; fáze β je naopak bo-
hatší na složku B a chudší na složku A. Lamela s menší rozpustností
dané složky ji při svém růstu vytlačuje do taveniny před krystalizační
frontu, odkud je difuzně přenášena do vzdálenější taveniny. Naopak
lamela s větší rozpustností dané složky ji při svém růstu odčerpává
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z taveniny před krystalizační frontou, kam musí být difuzně přesou-
vána ze vzdálenější taveniny. Tak vznikají difuzní toky atomů A i B
ve směru osy z, které jsou kolmé ke krystalizační frontě a probíhají
na vzdálenost δD. Protože však je δD � λ/2, je možno difuzi složek v
tomto směru zanedbat.

Teplotní pole v tavenině na krystalizační frontě s eutektikem (obr. 4.32)
souvisí s poklesem rovnovážné eutektické teploty TE o hodnotu ∆T ,
k níž v každém bodě rozhraní mezi pevnou fází a taveninou přispívají
tři složky:

• Pokles teploty metastabilního likvidu o hodnotu ∆Tc způsobený
nakupením atomů cizí složky před čelem lamely. Největší obo-
hacení taveniny látkou A nebo B je ve středu každé lamely, proto
zde bude i největší hodnota ∆Tc. Ta se při obvyklých rychlostech
růstu odhaduje na asi 1K.

• Pokles teploty o hodnotu ∆Tr spojený se zakřivením čela ros-
toucí lamely, k němuž dojde proto, aby byly v rovnováze ener-
gie všech mezifázových rozhraní (obr. 4.33c). Při kladném teplot-
ním gradientu v tavenině (obr. 4.33c) jsou předsunuté středy čel
jednotlivých lamel ve styku s nejteplejší taveninou, a proto je v
těchto místech nejmenší hodnota ∆Tr. Poklesy teplot ∆Tc a ∆Tr

se vzájemně kompenzují a krystalizační fronta zůstane izoter-
mální. Mohou nastat případy, kdy ∆Tr < 0 i ∆Tr > 0 podle
toho, zda zakřivení lamel je konvexní nebo konkávní z pohledu
taveniny.

• Pokles teploty o hodnotu ∆Tk, který se nazývá kinetické pře-
chlazení a podmiňuje vznik energie potřebné pro ukládání atomů
na čelech eutektických lamel. U kovových eutektik lze veličinu ∆Tk

zanedbat, protože například při rychlosti růstu 10−4m·s−1 je u
většiny soustav ∆Tk < 10−2 K. U nekovových eutektik nabývá
veličina ∆Tk významných hodnot.

Celkový pokles eutektické teploty o hodnotu ∆T je dán součtem jed-
notlivých veličin

∆T = ∆TD + ∆TC + ∆TK . (4.23)

Hodnota ∆T určuje skutečnou teplotu krystalizace eutektika T =
TE −∆T .

Po vysvětlení koncentračního a teplotního pole v tavenině na krystali-
zační frontě s eutektikem se nyní budeme zabývat jedním ze základních
modelů sdruženého růstu dvojice eutektických lamel, který vysvětlíme po-
mocí obr. 4.33. V zájmu zjednodušení budeme předpokládat symetrický
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Obrázek 4.32: Rozložení složek A a B a změna rovnovážné eutektické teploty před krys-
talizační frontou eutektika
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rovnovážný a entalpický diagram, stacionární růst eutektika a rovinnost
jeho krystalizační fronty v makroměřítku, stejné hodnoty a stejnou tloušt’ku
lamel α a β.

Přechlazení ∆T eutektické taveniny je úměrná termodynamická hnací
síla eutektické přeměny ∆G (4.22). Uvažujeme, že ta se při čelním růstu
lamelárního eutektika rozdělí na část ∆GD, která se spotřebovává na di-
fuzní přerozdělování složek vyvolané jejich koncentračním gradientem ve
směru x a na část ∆GS, která se vynakládá na vytvoření mezifázového roz-
hraní α-β. Můžeme tedy napsat, že

∆G = ∆GD + ∆GS. (4.24)

Podobně lze rozdělit i celkové přechlazení ∆T na dvě části

∆T = ∆TD + ∆TS, (4.25)

z nichž ∆TD podmiňuje vznik energie ∆GD, ∆TS je spojeno se vznikem
∆GS.

Budeme hledat vztah, spojující přechlazení ∆T (∆TD,∆TS), rychlost růstu JG

a mezilamelární vzdálenost λ. Je možné očekávat vytvoření určité vzdále-
nosti λ představující kompromis mezi celkovou energií mezifázového roz-
hraní α-β, která vzrůstá se zmenšujícím se λ, a celkovou difuzní dráhou slo-
žek před krystalizační frontou eutektikum-tavenina, která vzrůstá se zvět-
šujícím se λ.

Ve vztahu k ∆TD uvažujme ustálené rozdělení uvažované složky v ta-
venině, které nastane, když množství složky vyloučené na čele jedné la-
mely odpovídá množství téže složky, přenesenému k čelu druhé lamely
ve stejném čase. Předpokládejme, že ploška dS = 1 leží uprostřed čela la-
mely β a posune se ve směru osy z o vzdálenost dz/dτ = JG. Přitom se z
lamely β vytěsní do taveniny před rozhraní β-L množství MA látky A, dané
výrazem

MA = JG

(
cβ−L
A − cβ

A

)
= JGcβ−L

A

(
1− kβ

A

)
= JGcE

A

(
1− kβ

A

)
, (4.26)

kde cβ−L
A , příp. cβ

A je kvazirovnovážná koncentrace látky B ve fázi β, ode-
čtená pro danou teplotu z prodloužené větve likvidu příp. solidu; kβ

A je
rovnovážný rozdělovací koeficient komponenty B mezi tuhým roztokem α

a taveninou, cβ−L
A

∼= cE
A při větším sklonu větví likvidu nebo při malém ∆T .

Množství látky MA se pomocí tangenciální difúze odvádí podél krysta-
lizační fronty od středu čela lamely β symetricky směrem doleva a doprava
ke středům čel lamel α. Vznikají difuzní toky podle obr. 4.33c,e.

JA = ±2DL
A

cβ−L
A − cα−L

A

λ
. (4.27)
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(a)

(b) (c)

(d) (e)

Obrázek 4.33: Model sdruženého růstu dvou lamel eutektika
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Ve stacionárním stavu je MA = 2JA (tj. 1/2 MA se přenáší doprava, 1/2 MA

se přenáší doleva), odkud vyplývá při uvážení první podoby vztahu (4.27),
že

cβ−L
A − cα−L

A =
λJGcE

A

(
1− kβ

A

)
4DL

A

. (4.28)

Označíme-li nyní mα = −tgω1 (kde úhel ω1 je úhel mezi likvidem α a eu-
tektickou teplotou) a analogicky mβ = −tgω2 (kde úhel ω2 je úhel mezi
likvidem β a eutektickou teplotou), můžeme vyjádřit přechlazení

∆TD = mβ

(
cE
A − cβ−L

A

)
nebo ∆TD = −mα

(
cα−L
A − cE

A

)
, (4.29)

odkud po úpravě vyplývá, že(
cβ−L
A − cα−L

A

)
= ∆TD

(
1

mα
− 1

mβ

)
, (4.30)

a s ohledem na (4.28) je pak

∆TD =
λJGcE

A

(
1− kβ

A

)
4DL

A

(
1

mα
− 1

mβ

) , (4.31)

neboli
∆TD = K ′JGλ, (4.32)

kde K ′ =
cE
A

“
1−kβ

A

”
4DL

A

„
1

mα
− 1

mβ

« zahrnuje všechny činitele, které se při růstu da-

ného eutektika nemění. Vztah (4.32) vyjadřuje hledanou závislost mezi ve-
ličinami ∆TD, K ′ a λ znázorněnou na obr. 4.34a.

Nyní si v souvislosti s přechlazením ∆TS uvědomíme, že celková plo-
cha mezifázového rozhraní α-β v eutektiku, příslušná jednotkovému ob-
jemu, je 2/λ. Potom můžeme vyjádřit energii, která se musí vynaložit na
tvorbu tohoto rozhraní, vztahem

∆GS = 2σαβ/λ = (∆HmE/TE) ∆TS (4.33)

a odtud

∆TS =
2σαβTE

λ∆HmE
, (4.34)

neboli

∆TS =
K ′′

λ
, (4.35)

kde K ′′ = 2σαβTE
∆HmE

zahrnuje všechny činitele, konstantní pro dané eutekti-
kum. Tím je nalezena závislost mezi veličinami ∆TS, K ′′ a λ, znázorněná
na obr. 4.34a.
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(a) (b)

Obrázek 4.34: Závislost mezi přechlazením, rychlostí růstu a mezilamelární vzdáleností

Konečně podle vztahu (4.25), s využitím (4.32) a (4.35) napíšeme celko-
vou hledanou funkci

∆T = K ′JGλ + K ′′λ−1. (4.36)

Grafické znázornění všech členů vztahu (4.36) je uvedeno na obr. 4.34a.
Z obr. 4.34a vidíme, že při malých hodnotách λ hraje hlavní úlohu pře-

chlazení ∆TS svázané s tvorbou mezifázového povrchu α-β, jehož celková
plocha je velká a na jeho tvorbu se z celkové hnací síly eutektické pře-
měny ∆G odčerpá její větší díl jako ∆GS. Při velkých hodnotách λ převládá
význam přechlazení ∆TD svázaného s difuzí, protože difuzní dráhy λ/2
jsou delší a větší díl ∆G se vynaloží jako ∆GD na uskutečnění přenosu
látky A a B mezi čely lamel α a β.

Pro argument λ = λ∗ má funkce (4.36) minimum. Veličina λ∗ je velmi
důležitá. Závisí např. na chemickém složení materiálu a ovlivňuje vlast-
nosti materiálu s lamelární strukturou. Nyní určíme λ = λ∗ z podmínky
(d∆T/dλ) = 0. Podle (4.36) obdržíme

d(∆T )
dλ

= K ′JG −K ′′λ−2 = 0, (4.37)

odkud
(λ∗)2 JG = K ′′/K ′ = K. (4.38)

Ze vztahu (4.38) vyplývá závislost λ∗ = ±
√

K/JG, znázorněná na obr. 4.34b.
Nyní čistě matematickou operací, tj. dosazením (4.38) do (4.36) a úpra-

vou obdržíme funkci, vyjadřující závislost mezi ∆T a JG ve tvaru

∆T = ±2
√

K ′K ′′JG. (4.39)

Dále, po dosazení (4.38) do (4.39) a po úpravě, obdržíme výraz spojující ∆T
a λ, ve tvaru

λ =
2K ′′

∆T
. (4.40)
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Rovnice (4.38), (4.39) a (4.40) mají zásadní význam pro popis růstu v lame-
lárních eutektických strukturách, protože vyjadřují souvislost mezi hlav-
ními růstovými veličinami. Pro tyčinková eutektika platí obdobné výrazy,
v kterých jsou pouze jiné konstanty.

4.1.3.2.3 Konstituční přechlazení při růstu lamelárního eutektika O pod-
statě konstitučního přechlazení jsme již hovořili v kap. 4.1.2.3. Nyní vysvět-
líme, jak se tento jev uplatňuje v tavenině ve směru osy z před krystalizační
frontou lamelárního eutektika. V kap. 4.1.2.3 jsme u rovinné krystalizační
fronty (r = ∞) vyjádřili vliv koncentrace přísady v tavenině na rovnováž-
nou teplotu likvidu vztahem (TL)∞ = Tm + mcL. Nyní uvažujme konečný
poloměr r zakřivení čela tuhé fáze rostoucí do kapaliny, což vede k výrazu

(TL)r = (TL)∞ − 2σLSTm

∆HmEr
. (4.41)

Nadále však budeme používat zjednodušeného výpočtu s předpokla-
dem, že (TL)r

∼= (TL)∞. S touto výhradou budeme nyní postupovat stejně
jako v kap. 4.1.2.3.

Kvalitativní představu o vzniku konstitučního přechlazení při tvorbě
eutektika, tj. dvoufázové soustavy, můžeme získat, jestliže nám už známé
základní poznatky budeme aplikovat na tvorbu pseudobinárního eutektika
α+β v ternární soustavě A-B-C. Při znalosti dřívější látky by souvislosti na
uvedeném obrázku měly být i bez bližšího vysvětlení jasné. Proto podotý-
káme jen některé základní údaje:

• Rovnovážný diagram na obr. 4.35a, z něhož získáme potřebné kon-
centrační a teplotní údaje, je pseudobinární rovnovážný diagram, který
vznikl jako řez příslušným ternárním diagramem rovinou kolmou k
základně a procházející křivkou monovariantní tvorby pseudobinár-
ního eutektika α + β.

• Postupujícím rozhraním α+β je do zbývající taveniny vytlačován pr-
vek C, který svou zvýšenou koncentrací v difuzní vrstvě před krysta-
lizační frontou ovlivňuje na tomto místě teplotu likvidu (obr. 4.35b);
tloušt’ka difuzní vrstvy δD

∼= DL
C/JG.

• Průběh skutečných teplot v tuhém eutektiku a v tavenině před krys-
talizační frontou je znázorněn na obr. 4.35c za předpokladu, že ∆Tk

∼= 0.
Tento průběh teplot se změří pomocí jemných termočlánků.

• Zopakujme, že konstituční přechlazení naznačené na obr. 4.35d vzniká,
jestliže gradient skutečné teploty v tavenině je menší než směrnice
tečny vedené na krystalizační frontě (z = 0) ke křivce snížených tep-
lot likvidu, tj.

dTQ

dz
≤
(

dTL

dz

)
z=0

, (4.42)
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Obrázek 4.35: Konstituční přechlazení taveniny na eutektické krystalizační frontě 1) bi-
nární eutektický bod, 2) monovariantní křivka tvorby pseudobinárního eutektika, 3) oblast
konstitučního přechlazení.

v němž
(dTL/dz)z=0 ≈ (TL − TS) /δD = ∆TE/δD, (4.43)

kde ∆TE je interval eutektických teplot, δD
∼= DL

C/JG je difuzní vrstva.

Konstituční přechlazení vyvolává u eutektických slitin jednofázovou
nestabilitu, která vzniká, jestliže soustava nemá eutektické, ale podeutek-
tické nebo nadeutektické složení. Dvoufázová nestabilita vzniká při zvý-
šení nebo snížení obsahu legujících prvků nebo příměsí (obr. 4.36).

4.1.3.3 Nelamelární typy eutektik

Ve stejném typu eutektické slitiny se může změnou podmínek krystalizace
získat místo lamelárního tyčinkové eutektikum. Přechod od lamelárního k
tyčinkovému eutektiku je znázorněn na obr. 4.37a.

Roste-li (obr. 4.37a) jedna z fází eutektika rychleji než druhá, proniká
hlouběji do taveniny. Tím je umožněn vznik konstitučního přechlazení před
čelem pomaleji rostoucí fáze. Při určitém stupni konstitučního přechlazení
se na čele této fáze počnou tvořit výstupky schopné pronikat do taveniny
větší rychlostí (viz také obr. 4.36). Vznik výstupků odpovídá buněčné mor-
fologii čela uvažované fáze. Na bočním povrchu tyčinek ještě nevzniká vý-
znamnější konstituční přechlazení nezbytné pro vznik výstupků a tím i roz-
větvení tyčinek. Tvorba tyčinkového eutektika je preferována zvětšujícím
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Obrázek 4.36: Typy nestability fázového rozhraní eutektika: 1) rovinné rozhraní, 2) jed-
nofázová nestabilita, 3) dvoufázová nestabilita; τ je čas

(a) (b)

Obrázek 4.37: Podmínky vzniku různých morfologií eutektika: a) přechod od lamelár-
ního k tyčinkovému eutektiku b) vliv přechlazení a rychlosti růstu na morfologii eutektika
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se rozdílem měrných objemů, teplot tání a latentních tepel krystalizace eu-
tektických fází.

Ve značném počtu eutektických slitin má jedna z fází nepravidelný tvar
a je uložena v matrici druhé fáze. Vznik morfologicky nepravidelného,
tzv. anomálního neboli degenerovaného eutektika, byl dříve vysvětlován
vzájemně nezávislou nukleací eutektických částic. Předpokládalo se, že zá-
rodky podřízené, morfologicky nepravidelné fáze vznikají v kapalném roz-
toku před krystalizační frontou a teprve po setkání s ní vrůstají do ma-
trice vedoucí fáze. Tato původní představa byla popřena zjištěním spoji-
tosti částic degenerované fáze uvnitř tzv. eutektických buněk. V současné
době se za důležitou příčinu vzniku degenerovaného eutektika považuje
významný rozdíl entropií krystalizace eutektických fází. Degenerované eu-
tektikum se vyskytuje například v soustavě Al-Si, Fe-C (grafit), Pb-Sb. Ve
slitinách Al-Si a Fe-C se do taveniny někdy přidávají malá množství „ne-
čistot“, tzv. očkovadel, aby se dosáhlo výrazných morfologických změn eu-
tektika a tím i mechanických vlastností. Slitiny Al-Si se očkují přísadou so-
díku, slitiny Fe-C přísadou křemíku pro zjemnění lupínkového grafitu a
přísadou ceru nebo hořčíku v kombinaci s křemíkem za účelem vzniku ku-
ličkového grafitu uloženého v kovové matrici. Toto eutektikum je součástí
struktury technicky významné litiny s kuličkovým grafitem, nazývané také
tvárná litina. Globulární eutektikum však může vznikat i v jiných sousta-
vách. Jeho tvorbu podporuje jednak velká rychlost pohybu krystalizační
fronty, jednak velký rozdíl mezi povrchovými energiemi koexistujících fází
σα-L, σβ-L, σα-β a dále velká povrchová energie σα-β . V některých soustavách
se mohou v závislosti na velikosti teplotního rozdílu ∆T na krystalizační
frontě a rychlosti čelního růstu JG vyskytovat různé morfologické typy eu-
tektik (obr. 4.37b).

Odloučená eutektika se vytvářejí v případech, kdy je přítomna ve znač-
ném množství primární podeutektická nebo nadeutektická fáze. Při tuhnutí
slitiny Sn-Al podle obr. 4.38 krystalizují primární dendrity hliníku mezi
teplotou likvidu a eutektickou teplotou. Po jejím dosažení neutuhne zbytek
taveniny eutektického složení jako směs dvou eutektických fází. Primární
dendrity hliníku pokračují ve svém růstu, dokud nespotřebují veškerý hli-
ník ze zbytkové taveniny. Krystaly cínu ztuhnou jako poslední ve tvaru
tenkého filmu vyloučeného kolem dendritů hliníku.

V novější době, po zvládnutí podmínek usměrněné krystalizace, se zkou-
mají možnosti využití mimořádných mechanických a fyzikálních vlastností,
dosahovaných vhodným složením a usměrněním eutektických fází. Vý-
roba usměrněných eutektik probíhá ve speciálních krystalizátorech. Podle
užitných vlastností se usměrněná eutektika dělí do několika skupin:

Vysokoteplotní materiály na bázi Ni a Co se uplatňují především při vý-
robě plynových turbín. Jde o usměrněná eutektika s fázemi např. Ni-
Ni3Ti, Ni-TiC, Ni3Al-Ni3Nb, Ni3Al-Ni3Ta, Ni3Al-Ni7Zr2, Co-CoBe,
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Obrázek 4.38: Rovnovážný diagram Sn-Al

Co-Co2Nb, Co-Co2Ta, Co-Co7W6, Co-HfC. U těchto materiálů jsou
známy základní mechanické vlastnosti při pokojové teplotě, hodnoty
meze pevnosti při tečení, meze tečení a Larsonovy-Millerovy dia-
gramy.

Materiály pro elektrotechniku a elektroniku , kde fyzikálně zajímavých
a technicky významných vlastností lze dosáhnout u orientovaných
eutektik převážně tyčinkové morfologie, kde jedna fáze je polovo-
divá a druhá fáze je vodivá. Takovou soustavou je eutektikum InSb-
NiSb. Polovodivá fáze InSb tvoří matrici, ve které jsou uloženy pa-
ralelně orientované tyčinky vodivé fáze NiSb. Intenzivně jsou studo-
vány také eutektické soustavy, u nichž je jedna z fází supravodivá a
druhá není supravodivá. Příkladem jsou soustavy Pb-Sn, nebo Pb-Sb,
kde supravodivou fází je tuhý roztok na bázi olova. Jeho supravodivé
vlastnosti jsou blízké supravodivým vlastnostem olova.

Magnetické materiály. Jako nadějné se jeví soustavy, jejichž fáze mají roz-
dílné magnetické vlastnosti. Jako příklad lze uvést eutektikum InSb-
MnSb, kde feromagnetická fáze MnSb je uložena v nemagnetické ma-
trici InSb. Štíhlé, paralelně orientované tyčinky MnSb dosahují velké
tvarové anizotropie.

Optické materiály polarizující elektromagnetické vlny. Do této skupiny patří
výroba polarizačních materiálů a výroba povlaků. Jde většinou o ty-
činková eutektika s matricí InSb, kde druhou fázi tvoří NiSb, CrSb,
FeSb, MnSb nebo Sb.

4.1.4 Peritektická krystalizace

4.1.4.1 Rovnovážné peritektické tuhnutí

Typický rovnovážný diagram je na obr. 4.39a. Při pomalém ochlazování sli-
tiny o složení c0 se při teplotě T1 začne z taveniny vylučovat tuhá fáze α o
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složení α1. S poklesem teploty se obohacuje fáze α podél křivky solidu a
taveniny podél křivky likvidu. Při peritektické teplotě (Tp) nukleuje fáze β
a jsou přítomny tři fáze: αp, βp a Lp. Těsně nad Tp podle pákového pravidla
je kvantitativní poměr přítomných fází přibližně 1/4αp + 3/4Lp; těsně pod
peritektickou horizontálou: 1/2βp + 1/2Lp. Peritektickou reakci slitiny c0

lze pak psát takto: 1/4αp + 3/4Lp → 1/2βp + 1/2Lp. Fáze α se tedy roz-
pustí v tavenině Lp a fáze βp krystalizuje z taveniny, dokud se mezi ní a
taveninou nedosáhne odpovídajícího kvantitativního poměru. Při dalším
ochlazování krystalizuje z taveniny dále fáze β až do teploty T2, kdy je
přítomna jen fáze β o výchozím složení slitiny c0. Předpokladem homo-
gennosti přítomných fází je velmi pomalé ochlazování, kterého se v praxi
málokdy dosáhne.

4.1.4.2 Nerovnovážné peritektické tuhnutí

Za obvyklých podmínek tuhnutí slitiny c0 (obr. 4.39a) se vytvoří v tave-
nině zárodky fáze α a rostou dendriticky. Dendrity se vyznačují vrstevna-
tostí, nebot’ krátká doba nestačí, aby difuzní pochody v tuhé fázi odstranily
nehomogenity vzniklé při tuhnutí. Při teplotě Tp proběhne rozpouštěcí re-
akce αp + Lp na povrchu dendritů α; na jejich povrchu dochází též ke krys-
talizaci fáze β o složení Lp. Pro fázi β je energeticky příznivější heterogenní
nukleace na dendritech fáze α než homogenní nukleace mimo fázi α. Při
peritektické teplotě je fáze α rychle oddělena od taveniny fází β, která ji
obklopí. Peritektická reakce se rychle utlumí, protože tavenina nemá pří-
stup k fázi α a rozpouštěcí část peritektické reakce se zastaví. Zbývající ta-
venina má složení Lp a je ve styku s tuhou fází o složení βp. Při poklesu tep-
loty krystalizuje pouze fáze β, která se vyznačuje vrstevnatostí následkem
změn chemického složení sledujících křivku solidu β. Schéma průběhu ne-
rovnovážné peritektické reakce je na obr. 4.39b.

4.1.5 Tuhnutí ingotů a odlitků

Výroba většiny technických slitin začíná jejich odlitím do ohnivzdorných
forem vyrobených z různých materiálů. Jestliže jsou ztuhlé kusy určeny k
válcování, tažení nebo kování, nazývají se ingoty (jsou-li velké) nebo před-
litky (mají-li menší rozměry). Jestliže jsou ponechány ve tvaru po ztuhnutí
nebo jsou třískově obráběny, nazývají se odlitky. Mechanismus tuhnutí je
ve všech případech stejný a nyní se jím budeme zabývat.

4.1.5.1 Makrostruktura ingotů a odlitků

Strukturu ingotů a odlitků tvoří tři vrstvy krystalů (obr. 4.40a):

Vrstva drobných rovnoosých krystalů vzniká v místech, kde je tavenina
na styku s formou velmi rychle ochlazena pod teplotu likvidu. Na
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(a) (b)

Obrázek 4.39: Peritektická krystalizace: a) peritektický rovnovážný diagram, b) schéma
nerovnovážné peritektické reakce probíhající v reálných podmínkách

stěně formy se vytvoří velké množství zárodků tuhé fáze, které rostou
do taveniny. Po zahřátí formy se mohou krystalky odloučit od stěny
formy a vlivem proudění jsou rozneseny i do vzdálenější taveniny
a ta za předpokladu nízké licí teploty tuhne velmi rychle a zároveň
v celém objemu. Výsledkem jsou rovnoosé krystaly v celém průřezu
ingotu. Při vysoké licí teplotě se většina krystalků odlomených od
stěny formy roztaví a rostou pouze ty, které zůstaly v blízkosti stěny
formy a vytvoří vzpomínanou jemnozrnnou vrstvu.

Vrstva sloupcovitých krystalů vzniká tak, že brzy po odlití se zmenší tep-
lotní gradient u stěn formy a krystaly v jemnozrnné vrstvě začnou
růst jako dendrity. Přednostně rostou krystaly, jejichž směr <100> je
přibližně rovnoběžný se směrem tepelného toku, tedy je kolmý ke
stěně formy. To vede k vytvoření sloupcovitých krystalů se vzájemně
rovnoběžnými osami. Jejich délka závisí na teplotním gradientu a
na velikosti nerovnovážného teplotního intervalu tuhnutí. po odlití
klesá v závislosti na čase rychlost ochlazování, sekundární větve den-
dritů jsou delší a vzdálenost mezi nimi se zvětšuje. Rostoucí sloupco-
vité krystaly před sebe vytlačují přísady, nečistoty a plyny.

Vrstva rovnoosých krystalů vyskytujících se ve střední části průřezu in-
gotu sestává z rovnoosých zrn různé orientace. Předpokládá se, že
zárodky těchto zrn tvoří odtavené a odlomené boční větve dendritů,
které jsou prouděním přeneseny do zbývající taveniny.

4.1.5.2 Smršt’ování při tuhnutí

Při tuhnutí většiny kovů a slitin dochází ke zmenšení jejich objemu, ke
smršt’ování, což také podstatně ovlivňuje jejich licí strukturu. U slitin s ma-
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(a) (b)

Obrázek 4.40: Makrostruktura ingotů a odlitků: a) zrna v příčném řezu odlitku, b) druhy
makrosegregací v podélném řezu ingotu z uklidněné oceli

lým intervalem tuhnutí je malé i přechodové pásmo a při narůstání tuhé
vrstvy tavenina postupně klesá. Výsledkem je vytvoření hluboké osové du-
tiny – staženiny. U slitin se velkým intervalem tuhnutí může přechodová
vrstva prostoupit téměř celý průřez ingotu (odlitku). V tomto případě ne-
vzniká soustředěná staženina. V průběhu tuhnutí vniká tavenina do pro-
storů mezi dendrity, aby vyrovnala jejich smršt’ování. V určitém okamžiku
tuhnutí se mezidendritické kanálky uzavřou, další tavenina do nich dále
neproniká a při smrštění zbytků taveniny, uzavřených mezi osami den-
dritů, dochází ke vzniku pórů.

4.1.5.3 Segregace v ingotech a v odlitcích

Kromě mikrosegregací, o nichž jsme mluvili dříve, dochází při tuhnutí in-
gotů a odlitků i ke vzniku makrosegregací (obr. 4.40b), přičemž působí
čtyři hlavní faktory: a) smršt’ování vlivem tuhnutí a vlivem poklesu tep-
lot, b) rozdílná hustota mezidendritické taveniny, c) rozdíl v hustotě mezi
taveninou a tuhou fází, d) proudění vyvolané rozdílnou hustotou taveniny,
závislou na místní teplotě. Všechny tato faktory mohou způsobit v průběhu
tuhnutí přenos látky na dlouhou vzdálenost.

Smršt’ování může způsobit tzv. obrácenou segregaci. Při bočním růstu
dendritů musí tavenina obohacená přísadou proudit zpět mezi větve den-
dritů, aby vyrovnala vliv smrštění. Tím se ve vnějších částech odlitku zvětší
koncentrace přísad ve srovnání s jeho středem. Tento jev se projevuje silně
hlavně u slitin s velkým intervalem tuhnutí (např. Al-Cu, Cu-Sn).

Mohou se také uplatnit gravitační vlivy v případech, kdy tavenina se
během tuhnutí obohacuje o složku s vyšší měrnou hmotností, např. Al-Cu.
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Taková tavenina má snahu klesat do spodních částí ingotu, což může být
narušeno prouděním.

Obecně jsou segregace nežádoucí, nebot’ negativně ovlivňují mecha-
nické vlastnosti. Přitom makrosegregace nelze odstranit homogenizačním
žíháním. Jejich vzniku je možno zabránit jen řízením procesu tuhnutí.
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